Bharat Heavy Electricals Limited

(A Govt. Of India Undertaking)

Ref. Enquiry No.: PE/PG/BHU/E-6783/2021, Dated 08.10.2021

DUE DATE 18 Oct 2021 BY 02:00 PM

Dear Sir/ Ma'am

Subject: Open tender Enquiry for "LT XLPE POWER CABLE" for 1 x 660 MW BHUSAWAL TPP as per Technical Specification No. PE-TS-415-507-E002 (R0).

BHEL invites your offers for Design, Manufacture, Inspection and testing at manufacturer's works, proper packing and delivery to site of LT XLPE POWER CABLE confirming to Technical specification **PE-TS-415-507-E002 (R0)** for **1** x **660 MW BHUSAWAL TPS.**

Your offer shall be submitted in two parts strictly as per Clause-2.0 of the "Instructions to Bidders" of GCC Rev. 07, in sealed cover for the below mentioned equipment/system.

Item Descript	Item Description – LT XLPE POWER CABLE							
Sl. No.	Project	TECHNICAL SPECIFICATIONS	Delivery completion schedule					
1	1 x 660 MW BHUSAWAL TPS.	PE-TS-415-507-E002 (R0)	As per annexure – I to NIT					

Your best quotation/offer for the above requirement, in line with tender terms and conditions, should be submitted **online via e-procurement system (NIC portal)**. It shall be the responsibility of the bidder to ensure that the tender is submitted **on or before the due date** by **02:00 PM**, **18.10.2021**. Part-I (techno-commercial) bids shall be opened at **05:00 PM**. on the due date.

Note: 1. Detailed tender documents have been uploaded on following websites: https://eprocurebhel.co.in, https://www.bhel.com/tenders; https://pem.bhel.com/Home.aspx

Bidders are requested to upload their best offer on https://eprocurebhel.co.in only.

2. In case bidders are not interested to quote, please send us the regret by e-mail or letter.

ENQUIRY TERMS AND CONDITIONS:

1. Offers should be submitted/uploaded separately in two parts online through e-procurement system as follows:

Part-I: TECHNO-COMMERCIAL BID Part-II: PRICE BID

For detailed instructions, please refer GCC Rev 07- Instructions to Bidders.

- Bidders shall submit their offers meeting the requirements of the following tender documents indicated in BHEL PEM GCC Rev- 07 and other Terms and Conditions included in this Enquiry Letter. Web link of GCC Rev 07 shall be as below, bidders may download the GCC Rev 07 from the given web link and go through the same before quoting: https://pem.bhel.com/Documents/GCC/GCCRev07.pdf
- 3. Bidders to note that following form the part of tender documents:
 - a. General Conditions of Contract (GCC) Rev 07 comprising of: <u>Instructions to Bidders and General Commercial Terms</u> & Conditions
 - b. Technical Specifications
 - c. Technical PQR
 - d. Special Conditions of Contract (SCC Rev. 01) of Project.
 - e. Enquiry terms & conditions (NIT)
 - f. Annexures I -IV
 - g. Vendor approval performa
 - h. Integrity Pact
- 4. Any hidden conditions/deviations mentioned elsewhere in offer and standard pre-printed terms & conditions of the tenderers shall not be considered valid.
- 5. Tenders shall be submitted strictly in accordance with the requirements of the above-mentioned tender documents. Deviations (Technical as well as Commercial), if any, shall be listed out separately in Annexure-II of GCC Rev-07 along

R. P. Yadav /Dy. Mgr/PGIII PS-Project Engineering Management, Power Project Engineering Institute, Plot no. 25, Sector – 16A, Noida (UP) 201301, INDIA (OFF) +91-120-4368652, (MOB.) +919560148866

Regd. Office BHEL House Siri Fort New Delhi-110049

Bharat Heavy Electricals Limited

(A Govt. Of India Undertaking)

Ref. Enquiry No.: PE/PG/BHU/E-6783/2021, Dated 08.10.2021

with reasons for taking such deviations in the bidding format in E-Procurement portal (NIC portal). Any deviations (Technical as well as Commercial) not mentioned in the Annexure-II shall not be considered. Bidders to note all the points mentioned in "Notes" of Annexure-II of GCC Rev.07.

- 6. Bidder has to submit "NO DEVIATION CERTIFICATE FOR COMMERCIAL TERMS AND CONDITIONS as per General Conditions of Contracts (GCC, Rev.07), Special Conditions of Contract and Notice Inviting Tender (NIT)" in case of no deviations.
- 7. Unsolicited fresh/revised bids shall not be entertained.
- 8. If any bidder has mentioned the term "Not Applicable" / "not required" / "not quoted" in BHEL price format, the same to be substantiated by the bidder. If such item is required to be supplied for system completion in future, same will be supplied free of cost by the successful bidder.
- 9. Purchaser shall be under no obligation to accept the lowest or any other tender and shall be entitled to accept or reject any/all tender(s) in part or full without assigning any reason whatsoever.
- 10. Tenderers must enclose the Quality Plan in the prescribed format, for approval. Equipment will be dispatched only after Purchaser's/Owner's inspection of the hold points specified in the approved Quality Plan and issue of Material Dispatch Clearance Certificate (MDCC).
- 11. Offers should be submitted separately in two parts online through e-procurement system only (NIC portal), however, all correspondence thereof, shall be addressed to the following persons and sent at the following address:

an correspondence thereory shan	and some special content of the sound content of the sound sound sound at the sound at the sound at the sound soun								
Mr. Mohit Kumar	Mr. R. P. YADAV	Mr. S K Dubey							
Dy. Engineer, PG-III	DY. Mgr. PG-III	DGM, PG-III							
E-mail: mohitgupta@bhel.in	E-Mail:	E-Mail: skdubey@bhel.in							
Ph. +91-120-4368832;	rajendra.prasad.yadav@bhel.in	Ph. No. +91-120-4363635;							
Mob: 7503530406	Ph. No. +91-120-4213621;	Mob: 8800377855							
	Mob: 9560148866								
M/s. Bharat Heavy Electricals Lt	d.,								
Project Engineering Management,									
PPEI Building, Plot No 25, Sector	-16A, Noida-201301, U.P., INDIA								

- 12. Payment Terms: As per clause no. 9.1 of General Commercial Terms and conditions of GCC Rev 07.
- 13. Evaluation will be done on L1 (Total cost to BHEL excluding GST) basis on lump sum basis. Incomplete offer or part offer of NIT BOM/BOQ shall be summarily rejected.
- 14. **Delivery Completion Schedule: -** Refer Annexure-I of NIT.
- 15. **Evaluation Conditions: (Reverse Auction)** "BHEL shall be resorting to Reverse Auction (RA) (Guidelines as available on www.bhel.com) for this tender. RA shall be conducted among the techno-commercially qualified bidders. Price bids of all techno-commercially qualified bidders shall be opened and same shall be considered for RA. In case any bidder(s) do(es) not participate in online Reverse Auction, their sealed envelope price bid along with applicable loading, if any, shall be considered for ranking."

"Vendors to note that above RA clause will supersede clause no 13 of "Instruction to Bidders" of GCC Rev 07"

16. Govt. of India's Public Procurement Policy – Preference to Make in India Clause: -

For subject tender only Class I local suppliers are eligible to bid (in line with clause no. 3 (a) of MII circular no P-45021/2/2017-PP (BE-II) Dtd-16-09-2020, as this package is covered in the list of Local Capacity & Local Competition (LCLC) package. In case of subsequent orders issued by nodal ministry, changing the definition of local content for the items of the NIT, the same shall be applicable even if issued after issue of this NIT, but before opening of Part-II bids against this NIT".

The local supplier at the time of tender, bidding, solicitation, shall be required to provide self-certification that as per the offered item, they meet the requirements of Class I local supplier as per the provisions of PPP-MII Order of Govt. of India and relevant circulars issued by nodal ministry w.r.t. above mentioned orders and shall give details of location(s) at which the local value addition is made and percentage of local content as per enclosed annexure IV / revised formats which may be asked later.

Subject package is divisible in nature.

- 17. Bidder to note that this is a conditional Open Tender enquiry subject to following condition: -
 - A) Meeting of Technical PQR

R. P. Yadav /Dy. Mgr/PGIII PS-Project Engineering Management, Power Project Engineering Institute, Plot no. 25, Sector – 16A, Noida (UP) 201301, INDIA (OFF) +91-120-4368652, (MOB.) +919560148866

Regd. Office BHEL House Siri Fort New Delhi-110049

Bharat Heavy Electricals Limited

(A Govt. Of India Undertaking)

Ref. Enquiry No.: PE/PG/BHU/E-6783/2021, Dated 08.10.2021

- B) Techno-commercial qualification/recommendation of bidder by the BHEL-PEM.
- C) Approval of vendor from end Customer (MAHAGENCO). Bidders who are not approved from MAHAGENCO (end customer) should furnish the credentials as per vendor approval performa (end customer) along with their bid.
- D) Offered item should mandatorily conform to PP-MII order provisions.

Price Bid of only those bidders shall be opened, who are techno-commercially recommended and are approved from end Customer.

- 18. Bidders to ensure that Third party/Customer issued certificates being submitted as proof of PQR qualification should have verifiable details of document/certificate issuing authority such as name & designation of Issuing Authority and its organization contact number and E-mail Id etc. In case the same is found not available, BHEL has the right to reject such document from evaluation.
- 19. Bidders to-
 - ensure compliance to Ministry of Power (MoP) Order No. 25-11/6/2018-PG dt. 02/07/2020 & Order No. 11/05/2018-Coord. dt. 23/07/2020, if applicable.
 - ensure compliance of Ministry of Finance (MoF) Order (Public Procurement No. 1 & 2) F. No. 6/18/2019/PPD dt. 23/07/2020.
 - to submit "Model Certificate for Tenders" as per Annexure-III of Ministry of Finance (MoF) Order (Public Procurement No. 1 & 2) F. No. 6/18/2019/PPD dt. 23/07/2020.
- 20. CIF is not available for this package.
- 21. Integrity Pact (applicable):-Integrity pact is applicable for subject package. IP is a tool to ensure that activities and transactions between the Company and its Bidders/ Contractors are handled in a fair, transparent and corruption free manner. A panel of Independent External Monitors (IEMs) have been appointed by BHEL with the approval of CVC. The names of the IEMs in panel are as follows:
 - I. IEM-1 details-Shri Arun Chandra Verma, IPS (Retd.), acverma1@gmail.com
 - II. IEM-2 details-Shri Virendra Bahadur Singh, IPS (Retd.), vbsinghips@gmail.com

The IP as enclosed is to be submitted (duly signed by authorized signatory) along with techno-commercial bid. Only those bidders who have entered into such an IP with BHEL would be competent to participate in the bidding. In other words, entering into this pact would be a preliminary qualification.

Please refer Section-8 of IP for Role and Responsibilities of IEMs. In case of any complaint arising out of the tendering process, the matter may be referred to the any of the IEMs mentioned above. All correspondence with the IEMs shall be done through email only.

- "No routine correspondence shall be addressed to the IEM (phone/ post/ email) regarding the clarifications, time extensions or any other administrative queries, etc. on the tender issued. All such clarification/ issues shall be addressed directly to the tender issuing (procurement) department officials."
- 22. The variation on overall package value due to changes in the scope shall be +/- 30% of contract value as per clause no. 6.0 indicated in the GCTC OF GCC (Rev. 07).
- 23. For bidders (who are not registered with BHEL-PEM) -Online Registration Portal is operational in BHEL. Registration in BHEL-PEM is not mandatory for this tender. However, Non-registered Vendors, who wish to apply for registration with BHEL-PEM, can apply through Online Registration Portal available at www.bhelpem.com → vendor section → Online Supplier Registration. All credentials and/or documents duly signed and stamped related to registration may be uploaded on the website and submit the application for registration.
- 24. All corrigenda, addenda, amendments, time extensions, clarifications etc. to the tender will be hosted on BHEL websites only (www.pem.bhel.com., www.bhel.com & https:// https://eprocurebhel.co.in) under subject tender reference. Bidders are requested to visit our websites from time to time to keep themselves updated. Bidders may go through the Sellers' manual & Help documents provided on E-Procurement Portal website & obtain required Digital Signature Certificate for participating in the subject Tender. For Bidders' convenience, the Helpdesk Nos. of E-Procurement (NIC) Portal is available at website i.e. https://eprocurebhel.co.in.
- 25. If any bidder uploads price bid in the unpriced section (techno-commercial attachment page) of the tender in e-procurement, in that case bidder(s) shall only be responsible for such mistake and any consequences thereof. Hence all bidders are requested to be more careful at the time of uploading the Unpriced and Price Bid for Part-I and Part-II respectively to avoid mismatch.
- 26. Bidders to quote the freight in terms of percentage of Total Ex-works price.

R. P. Yadav /Dy. Mgr/PGIII
PS-Project Engineering Management,
Power Project Engineering Institute,
Plot no. 25, Sector – 16A, Noida (UP) 201301, INDIA
(OFF) +91-120-4368652, (MOB.) +919560148866

Bharat Heavy Electricals Limited

(A Govt. Of India Undertaking)

Ref. Enquiry No.: PE/PG/BHU/E-6783/2021, Dated 08.10.2021

- 27. Bidders to note that "This item /package/system falls under the list of items defined in para 3 of ministry of finance guideline date 20.09.16 (procurement of items related to public safety, health, critical security operations and Equipments etc.) & hence criteria of prior experience /turnover shall be same for all bidders including start-up /MSME".
- 28. Due to COVID-19 pandemic condition prevailing in the country, BHEL/PEM may go for Remote Inspection of Offered items, if required. Vendors are requested to be equipped with the facilities/gadgets as indicated in the guidelines available at https://pem.bhel.com/Documents/VendorSection/Vendor/Guidelines.pdf to take up the inspection REMOTELY.
- 29. The Bidder declares that they will not enter into any illegal or undisclosed agreement or understanding, whether formal or informal with other Bidder(s). This applies in particular to prices, specifications, certifications, subsidiary contracts, submission or non-submission of bids or any other actions to restrict competitiveness or to introduce cartelization in the bidding process. In case, the Bidder is found having indulged in above activities, suitable action shall be taken by BHEL as per extant policies/ guidelines.
- 30. In the course of evaluation, if more than one bidder happens to occupy L-1 status, effective L-1 will be decided by soliciting discounts from the respective L-1 bidders. In case more than one bidder happens to occupy the L-1 status even after soliciting discounts, the L-1 bidder shall be decided by a toss / draw of lots, in the presence of the respective L-1 bidder(s) or their representative(s). Ranking will be done accordingly. BHEL's decision in such situations shall be final and binding.
- 31. **Performance Bank Guarantee:** Performance Security amount shall be @5% of the value of contract value (excluding taxes duties & freight). Further, following shall be part of NIT.
 - "Bidder agrees to submit performance security required for execution of the contract within the time period mentioned. In case of delay in submission of performance security, enhanced performance security which would include interest (SBI + 6%) for the delayed period, shall be submitted by the bidder. Further, if performance security is not submitted till the first bill becomes due, the amount of performance security shall be received as per the terms defined in NIT/contract, from the bills along with due interest.
- 32. **Price Variation Clause:** PVC shall be applicable for Order Qty. Refer PVC Annexure as attached. PVC shall be payable within agreed contractual delivery period. In case of delay is attributable to vendor for the payment purpose the PVC shall be calculated based on rates applicable as on the date of expiry of contractual delivery date or actual delivery date whichever is beneficial to BHEL.
- 33. All other terms and conditions of SCC (Rev 01) of project, NIT & GCC (Rev 07) shall be applicable for the subject package.
- 34. Bidders who are participating in this tender please note that GeM seller ID is mandatory before placement of order.
- 35. M/s CMI LTD. is not eligible to quote for subject tender enquiry.
- 36. Detailed offers are to be uploaded including the following along with the Price schedule as per BHEL format enclosed with NIT: -
 - Acceptance of BHEL-PEM GCC (Rev.-07)
 - Acceptance of Special Conditions of Contract (SCC Rev. 01) for the project.
 - Technical & Commercial Deviations, if any along with Cost of withdrawal.
 - TECHNICAL Pre-Qualifying Requirement (PQR)
 - Along with your offer, please submit a copy of this letter duly signed & stamped on each page as token of
 acceptance of terms & instructions conveyed.
 - Un-Priced price format duly filled in 'Quoted" or 'Q' in each column/row.
 - Filled Format of Certification reg. Local content (annexure –IV)
 - Performa for Vendor approval

All the above Tender Documents shall automatically become a part of the Order/Contract after its finalisation.

Bharat Heavy Electricals Limited

(A Govt. Of India Undertaking)

Ref. Enquiry No.: PE/PG/BHU/E-6783/2021, Dated 08.10.2021

Thanking You.

- Please contact to BHEL (via mail or phone) for any clarification (technical or commercial) at least one week before the due date (Techno-Commercial bid opening).
- ❖ Please note all correspondence from BHEL-PEM before part − I opening, shall also be part of NIT.

Yours faithfully,

For and on behalf of BHEL-PEM

RAJENDRA

PRASAD YADAV Digitally signed by RAJENDRA PRASAD YADAV DN: cn=RAJENDRA PRASAD YADAV, o=BHEL, ou=PS-PEM, email=rajendra.prasad.yadav@bhel.ir c=IN Date: 2021.10.08 15:23:28 +05'30'

R. P. YADAV

(DY. MANAGER/PG-III/BHEL-PEM)

Enclosures:

- 1. Technical Specification No. PE-TS-415-507-E002 (R0)
- 2. Technical PQR
- 3. Delivery completion cum Drawings/documents submission Schedule (Annexure –I)
- 4. BOQ cum Unpriced format & COW Annexure -II
- 5. PVC Factor & Formula (Annexure –III)
- 6. Format of Certification reg. Local content (annexure -IV)
- 7. Performa for Vendor approval
- 8. Guidelines for remote inspection.
- 9. SCC (Rev. 01)
- 10. Integrity Pact
- 11. GCC (Rev. 07)- https://pem.bhel.com/Documents/GCC/GCCRev07.pdf

Delivery Schedule of LT XLPE POWER CABLE-1 X 660 MW BHUSAWAL TPP

SI. No	o. Package Code	Package name	DEPTT	BHEL Drawing No	Drawing Title	Primary/Secondary	Drg Sch for Vendors	Standard Delivery Terms for Supply Portion
				1PF-V0-XXX-507-F113	CROSS SECTION DRGS LT XLPE POWER CABLES	Primary	R-0 within 14 days from PO & subsequent revisions within	
			-	PE-V0-XXX-507-E913	QUALITY PLAN - LT XLPE POWER CABLES	Primary	10 days of comments received from BHEL. BHEL shall furnish comments / approval on each submission within 18	Within "Four (04)" months from date of CaT-1 approval of Primary drawing/documents or BHEL manufacturing clearance whichever is later, subjected to drawing/document submission/re-submission schedule as stipulated in case of any delay in submission/re-submission of Primary drawing/documents,
				IPF-\/()-XXXX-5()7-F111	TECHNICAL DATA SHEET - LT XLPE POWER CABLES	Primary		
1	507-28000-A	LT XLPE POWER CABLES	ELECT	IPF-\/()-XXXX-5()7-F114	TYPE TEST CERTIFICATES - LT XLPE POWER CABLES	Secondary	Within 1 week after conduction of type test	then same shall be reduced from the given delivery period. Delay in BHEL's comments/approval beyond 18 days shall also be considered for delay analysis. For Subsequent Lots (if any): Within 3 months from Lot clearance by BHEL.

Noto:

- 1. Vendor to start manufacturing activities only after obtaining specific manufacturing clearance from BHEL Purchase group.
- 2. In case BHEL manufacturing clearance date is later than the date of Cat-1 approval of Primary drawing/documents, then the contractual delivery period will be calculated by setting off the time gap between Cat-1 approval date of Primary drawing/documents and the manufacturing clearance date, from any delay by vendor in submission/re-submission of Primary drawing/documents.
- 3. The end period specified is for completion of the deliveries. Deliveries to start progressively so as to meet the completion schedule.
- 4. The delivery conditions specified are for contractual LD purposes, however BHEL may ask for early deliveries without any compensation thereof.
- 5. Non-applicable drawings shall be decided during bid evaluation.
- 6. Wherever schedule of drawings/documents submission / re-submission is stipulated in the Technical Specifications, same shall be superseded by delivery specified in NIT.

ANNEXURE - II SCHEDULE OF TECHNICAL AND COMMERCIAL DEVIATION PROJECT:- 1 x 660 MW BHUSAWAL TPP PACKAGE:- LT XLPE POWER CABLE TENDER REF NO - PE/PG/BHU/E-6783/2021 dated 08.10.2021. NAME OF VENDOR:-VOULME/ PAGE NO. CLAUSE **TECHNICAL** COMPLETE COST OF REFERENCE OF PRICE NATURE OF COST OF **REASON FOR** SL NO SECTION NO. SPECIFICATION/ **DESCRIPTION OF** WITHDRAWL OF **QUOTING DEVIATION** SCHEDULE ON WHICH WITHDRAWL OF TENDER DOCUMENT **DEVIATION DEVIATION** COST OF WITHDRAWL DEVIATION (POSITIVE/ NEGATIVE) OF DEVIATION IS APPLICABLE **TECHNICAL DEVIATIONS** COMMERCIAL DEVIATIONS PARTICULARS OF BIDDERS/ AUTHORISED REPRESENTATIVE NAME **DESIGNATIONS** SIGN & DATE NOTES:

- Cost of withdrawl of deviation will be applicable on the basic price (i.e. excluding taxes, duties & freight) only.
- 2. All the bidders have to list out all their Technical & Commercial Deviations (if any) in detail in the above format.
- 3. Any deviation not mentioned above and shown separately or found hidden in offer, will not be taken cognizance of,
- 4. Bidder shall submit duly filled unpriced copy of above format indicating "quoted" in "cost of withdrawl of deviation" column of the schedule above along with their Techno-commercial offer, wherever applicable. In the absence of same, such deviation(s) shall not be considered and offer shall be considered in total compliance to NIT.
- 5. Bidder shall furnish price copy of above format along with price bid.
- 6. The final decision of acceptance/ rejection of the deviations quoted by the bidder shall be at discretion of the Purchaser.
- 7. Bidders to note that any deviation (technical/commercial) not listed in above and asked after Part-I opening shall not be considered.
- 8. For deviations w.r.t. Credit Period, Liquidated damages, Firm prices if a bidder chooses not to give any cost of withdrawl of deviation loading as per Annexure-VII, will apply. For any other deviation mentioned n un-priced copy of this format submitted with Part-I bid but not mentioned in priced copy of this format submitted with Priced bid, the cost of withdrawl of deviation shall be taken as NIL.
- 9. Any deviation mentioned in priced copy of this format, but not mentioned in the un-priced copy, shall not be considered.
- 10. All techno-commercial terms and conditions of NIT shall be deemed to have been accepted by the bidder, other than those listed in unpriced copy of this format.
- 11. Cost of withdrawl is to be given seperately for each deviation. In no event bidder should club cost of withdrawl of more than one deviation else cost of withdrawl of such deviations which have been clubbed together shall be considered as NIL.
- 12. In case nature of cost of withdrawl (positive/negative) is not specified it shall be assumed as positive.
- 13. In case of descrepancy in the nature of impact (positive/ negative), positive will be considered for evaluation and negative for ordering.

Annexure-III of NIT- Ref No.-PE/PG/BHU/E-6783/2021 Dtd. 08.10.2021.
BHUSAWAL-LT XLPE POWER CABLE

Ref: PW/PE/CMM-PVC Cables Packages (Rev-02)

Dated:19/02/2019

Note: Applicable for cable tenders released on or after 14/01/2019.

Price Variation Formulae for cables -Annexure-I

1. Prices shall be variable as per price variation formulae given below (basis IEEMA).

The price variation shall be limited to + 20% of total ex-works price actually supplied (cable size wise) and -ve price variation shall be unlimited. Rates for working out price variation shall be as per rates published by IEEMA for the factors given in Annexure-II

2. Base date for prices:

Initial Price (As per IEEMA) for-Alo, Cuo, CCo, PVCCo & Feo:

Base Date shall be-1st working day of the previous month to the date of issue of tender enquiry.

Final Price (as per IEEMA) for- AI, Cu, Cc, PVCC & Fe:

1st working day of month, one month prior to the date on which cable is notified as being ready for inspection i.e TPIA inspection call raise date on web portal.

- 3. Variation factor value for ALF, CuF, CCFAL, CCFCu, XLFAL, XLFCu, FeF & FeW as applicable shall be as per Technical Specification.
- 4. PVC shall be payable within contractual delivery period (including any extension thereto).

IEEMA table for Price variation cause for various type of cable

1. Aluminium conductor cable

S.N o	Cable Type	AIF (Single core unarmoure d & Multi core armoured)	AIF (Single core armoured)	CCFAI	XLFAL (Single core)	XLFAL (Multi core)	FeF	FeW	IEEMA Formula
1.	HT XLPE Power cable	ALP	Н1	H2	XL3	XL4	НЗ	Н5	P=Po+AIF(AL- Alo) + XLFAL(CC-CCo) +CCFAI(PVCC- PVCCo) + FeF(Fe-Feo)
2.	LT XLPE Power Cable	ALP	PI	L2	XLI	XL1	P3	P3 (Additional)	P=Po+AIF(AL- Alo) + XLFAL(CC-CCo) +CCFAI(PVCC- PVCCo) + FeF(Fe-Feo)
3.	LT PVC Power Cable	ALP	PI	P2	-	-	P3	P3 (Additional)	P=Po+AIF(AL- Alo) + CCFAI(PVCC- PVCCo) + FeF(Fe-Feo)
4.	LT HRPVC Power Cable	ALP	P1	P2	-	-	Р3	P3 (Additional)	P=Po+AIF(AL- Alo) + CCFAI(PVCC- PVCCo) + FeF(Fe-Feo)

2. Copper conductor cable

S no.	Cable type	CuF	AIF (single core armou red)	CCFCu	XLFCU (Single core)	XLFCU (Multi core)	FeF	FeW	IEEMA Formula
I	HT XLPE Power cable	CUP	H4	H2	XL3	XL4	Н3	Н5	P=Po+CuF(Cu-Cuo) + XLFCU(CC-CCo) +CCFCu(PVCC- PVCCo) + FeF(Fe- Feo) + AJF(AL-Alo)
2	LT XLPE Power Cable	CUP	P4	L2	XL1	XLI	Р3	P3 (Addit ional)	P=Po+CuF(Cu-Cuo) + XLFCU(CC-CCo) + CCFCu (PVCC- PVCCo) + FeF(Fe- Feo) + AIF(AL-Alo)

S no.	Cable type	CuF	AIF (single core armou red)	CCFCu	XLFCU (Single core)	XLFCU (Multi core)	FeF	FeW	IEEMA Formula
3	LT PVC Power Cable	CUP	P4	P2			Р3	P3 (Addit ional)	P=Po+CuF(Cu-Cuo) + CCFCu (PVCC- PVCCo) + FeF(Fe- Feo) + AIF(AL-Alo)
4	LT HRPVC Power Cable	CUP	P4	P2			Р3	P3 (Addit ional)	P=Po+CuF(Cu-Ćuo) + CCFCu (PVCC- PVCCo) + FeF(Fe- Feo) + AIF(AL-Alo)
5	LT XLPE Control Cable	CUC		P5		XL2	P6	P6 (Addit ional)	P=Po+CuF(Cu-Cuo) + XLFCU(CC-CCo) + CCFCu (PVCC- PVCCo) + FeF(Fe- Feo)
6	LT PVC Control Cable	CUC		P5			P6	P6 (Addit ional)	P=Po+CuF(Cu-Cuo) + CCFCu (PVCC- PVCCo) + FeF(Fe- Feo)
7	LT HRPVC Control Cable	CUC		P5			P6	P6 (Addit ional)	P=Po+CuF(Cu-Cuo) + CCFCu(PVCC- PVCCo) + FeF(Fe- Feo)
8	LT XLPE Fire Survival Power Cable	CUP	P4	L2	XLI	XLI	Р3	P3 (Addit ional)	P=Po+CuF(Cu-Cuo) + XLFCU(CC-CCo) + CCFCu (PVCC- PVCCo) + FeF(Fe- Feo))+ AIF(AL-Alo)
9	LT XLPE Fire Survival Control	CUC		P5		XL2	P6	P6 (Addit ional)	P=Po+CuF(Cu-Cuo) + XLFCU(CC-CCo) + CCFCu (PVCC- PVCCo) + FeF(Fe- Feo)
10	LT EPR Fire Survival Power Cable	CUP	P4	L2			Р3	P3 (Addit ional)	P=Po+CuF(Cu-Cuo) + CCFCu (PVCC- PVCCo) + FeF(Fe- Feo))+ AIF(AL-Alo)
11	LT EPR Fire Survival Control cable	CUC		P5			P6	P6 (Addit ional)	P=Po+CuF(Cu-Cuo) + CCFCu (PVCC- PVCCo) + FeF(Fe- Feo)
12	Screened control Cable (Overall screen)	Cu POS					Fe POS	Fe POS	P=Po+CuF(Cu-Cuo) + FeF(Fe-Feo)
13	Screened control Cable (Individual	Cu PIS					Fe PIS	Fe PIS	P=Po+CuF(Cu-Cuo) + FeF(Fe-Feo)

IEEMA Table for Price Variation Clause for various types of Cables

Notes:-

- (i) Cu POS, Cu PIS, Fe POS & Fe PIS tables shall be as per IEEMA circular No. IIEMA (PVC) /Instrumentation Cable/2014 effective from dtd 01.07.2014.
- (ii) All other tables shall be as per IEEMA circular No. 35//DIV/CAB/05/ dated 24.04.2018.

Terms used in PVC formulae:

P = Price payable as adjusted in accordance with above appropriate formula (In Rs./Km). Po= Price quoted/confined (in Rs./km).

1. ALUMINIUM

ALF Variation factor for aluminium. Al =Price of aluminium.

Alo = Price of aluminium.

2 COPPER

CuF =Variation factor for copper.

Cu = Price of CC copper rods.

Cuo = Price of CC copper rods.

3.PVCc COMPOUND/POLYMER

PVCc = Price of PVC compound.

PVCco= Price of PVC compound.

CCFAL= Variation factor for PVC compound/Polymer for aluminium conductor cable.

CCFCu =Variation factor for PVC compound/Polymer for copper conductor cable.

4. XLPE COMPOUND

Cc = Price of XLPE compound.

Cco= Price of XLPE compound.

XLFAL= Variation factor for XLPE compound for aluminium conductor cable.

XLFCu = Variation factor for XLPE compound for copper conductor cable.

5.STEEL

Fe= Price of steel strips/steel wire.

Feo= Price of steel strips/steel wire.

FeF =Variation factor for steel.

FeW=Variation factor for round wire steel armouring.

. . 1

501, Kakad Chambers 132, Dr. Annie Besant Road, Worli Mumbai 400018 India P: +91 22 2493 0532 F: +91 22 2493 2705 E: mumbai@ieema.org www.ieema.org

IEEMA (PVC)/instrumentation Cable/2014

Effective from: 1st July 2014

Material Price Variation Clause For Instrumentation Cables

The Price quoted/confirmed is based on the input cost of raw materials/components as on the date of quotation, and the same is deemed to be related to the prices of raw materials as specified in the price variation clause given below. In case of any variation in these prices, the price payable shall be subject to adjustment up or down in accordance with the formulae provided in this document.

Terms used in price variation formulae:

- P Price payable as adjusted in accordance with above appropriate formula (in Rs/Km)
- Po Price quoted/confirmed (in Rs/Km)

COPPER

- CuF Variation factor for copper
- Cu Price of CC copper rods. This price is as applicable on first working day of the month, one month prior to the date of delivery.
- Cu_o Price of CC copper rods. This price is as applicable on first working day of the month, one month prior to the date of tendering.

STEEL

FeF	Variation factor for steel
Fe	Price of Steel Strips/steel wire. This price is as applicable on the first working day of the month, one month prior to the date of delivery.
Fe _o	Price of steel strips/steel wire. This price is as applicable on first working day of the month, one month prior to the date of tendering.

The above prices and indices are as published by IEEMA vide Circular reference IEEMA(PVC)/CABLE/-/- prevailing as on $\mathbf{1}^{\pi}$ working day of the month i.e. one month prior to the date of tendering.

The date of delivery is the date on which the cable is notified as being ready for inspection/dispatch (in the absence of such notification, the date of manufacturer's dispatch note is to be considered as the date of delivery) or the contracted delivery date (including any agreed extension thereto), whichever is earlier.

Page 1 of 2

New Delhi Bangalore Kolkata 503 A, Oswal Chambers Rishyamook Building, First Floor 204, Swiss Complex 2, Church Lane Kolkata 700001, India 85 A, Panchkuian Road 33, Race Course Road Bangalore 560001, India New Delhi 110001, India P: +91 80 2220 1316/18 P. +91 33 6510 7855 P. +91 11 2336 3013/14 F: +91 11 2336 3015 E:+91 80 2220 1317 P. +91 33 2213 1326 E: kolkata@ieema.org E: delhi@ieema.org E bangalore@ieema.org

Indian Electrical & Electronics Manufacturers' Association

Effective from: 1st July 2014

The state of the state of the state of

IEEMA (PVC)/Instrumentation Cable/2014

Notes

It so it

- (a) All prices of raw materials are exclusive of modvatable excise/CV duty amount and exclusive of any other central, state or local taxes, octroi, etc.
- (b) All Prices are as on first working day of the month.
- (c) The details of prices are as under:
- 1. Price of CC copper rods (in Rs/MT) is ex-works price as quoted by the primary producer.
- 2. Price of galvanized steel strip / steel wire (in Rs/MT) is ex-works price as quoted by the manufacturer for Round steel Wire and Flat steel strip (the relevant price of steel strip or steel wire is to be selected depending upon the type of armouring of the cable).

Price variation formula for 'Instrumentaion Cables'

P = Po + CuF(Cu - Cuo) + FeF(Fe - Feo)

1. For Pair Instrumentation Over all Screen Cables

Tables References:

Cu POS Copper Factor

Fe POS Steel Factor

2. For Pair Instrumentation Individual and Over all Screen Cables

Tables References:

Cu PIS

Copper Factor

Fe PIS

Steel Factor

3. For Triad Instrumentation Over all Screen Cables

Tables References:

Cu TOS

Copper Factor

Fe TOS

Steel Factor

4. For Triad Instrumentation Individual & Overall Screen Cables

Tables References:

Cu TIS

Copper Factor

Fe TIS

Steel Factor

Page 2 of 2

Copper Factors for Instrumentation Cables - CuF Cu POS

 $h = \{j, i, j, i\}$

	Pair Instrumentation Over all Screen Cables									
No. of Pairs	0.5 sq.mm	0.75 sq.mm	1.0 sq.mm	1.5 sq.mm	2.5 sq.mm					
Cable size in										
sg.mm										
					0.0500					
1	0.0142	0.0185	0.0233	0.0326	0.0500					
2	0.0258	0.0345	0.0440	0.0625	0.0978					
3	0.0353	0.0484	0.0626	0.0904	0.1433					
4	0.0448	0.0623	0.0811	0.1183	0.1888					
5	0.0578	0.0800	0.1022	0.1467	0.2356					
6	0.0662	0.0926	0.1210	0.1768	0.2829					
7	0.0756	0.1067	0.1378	0.2000	0.3245					
8	0.0852	0.1204	0.1582	0.2327	0.3741					
9	0.0933	0.1334	0.1734	0.2534	0.4134					
10	0.1046	0.1485	0.1959	0.2893	0.4665					
11	0.1111	0.1600	0.2089	0.3067	0.5023 0.5580					
12	0.1236	0.1764	0.2333	0.3452						
13	0.1289	0.1867	0.2445	0.3600	0.5912					
14	0.1378	0.2000	0.2623	0.3867	0.6356					
15	0.1467	0.2134	0.2800	0.4134	0.6801					
16	0.1618	0.2322	0.3080	0.4573	0.7409					
17	0.1645	0.2400	0.3156	0.4667	0.7690					
18	0.1734	0.2534	0.3334	0.4934	0.8134					
19	0.1822	0.2667	0.3512	0.5201	0.8579					
20	0.1911	0.2800	0.3689	0.5467	0.9023					
21	0.2000	0.2934	0.3867	0.5734	0.9468					
22	0.2089	0.3067	0.4045	0.6001	0.9912					
23	0.2178	0.3200	0.4223	0.6267	1.0357					
24	0.2381	0.3437	0.4575	0.6813	1,1068					
25	0.2356	0.3467	0.4578	0.6801	1,1246					
26	0.2445	0.3600	0.4756	0.7068	1,1690					
27	0.2534	0.3734	0.4934	0.7334	1.2135					
28	0.2623	0.3867	0.5112	0.7601	1,2579					
29	0.2711	0.4001	0.5290	0.7868	1,3024					
30	0.2800	0.4134	0.5467	0.8134	1.3468					
31	0.2889	0.4267	0.5645	0.8401	1.3913					
32	0.2978	0.4401	0.5823	0.8668	1.4357					
33	0.3067	0.4534	0.6001	0.8934	1.4802					
34	0.3156	0.4667	0.6179	0.9201	1.5246					
35	0.3245	0.4801	0.6356	0.9468	1.5691 1.6135					
36	0.3334	0.4934	0.6534	1.0001	1.6580					
37	0.3423	0.5067	0.6712 0.6890	1.0268	1,7024					
38	0.3512	0.5201	0.0890	1.0535	1,7469					
39	0.3600	0.5334 0.5467	0.7245	1.0801	1,7913					
40	0.3689	0.5601	0.7423	1.1068	1.8358					
41	0.3778	0.5734	0.7601	1.1335	1.8802					
42	0.3956	0.5867	0.7779	1.1601	1,9247					
	0.3956	0.6001	0.7957	1.1868	1.9691					
44		0.6134	0.8134	1,2135	2.0136					
45	0.4134	0.6267	0.8312	1.2402	2.0580					
46	0.4223			1.2668	2.1025					
47	0.4312	0.6401	0.8490	1.3410	2.2009					
48	0.4710	0.6759	0.9010	1,5410	2.2003					

Copper Factors for Instrumentation Cables - CuF

D = 1 1 1

		Cı	ı PIS		
P	air Instrumer	tation Individ	ual and Over	all Screen Cal	bles
No. of Pairs	0.5 sq.mm	0.75 sq.mm	1.0 sq.mm	1.5 sq.mm	2.5 sq.mm
Cable size in			ļ		1
sq.mm					
1	0.0133	0.0178	0.0222	0.0311	0.0489
2	0.0349	0.0437	0.0531	0.0717	0.1069
3	0.0490	0.0621	0.0763	0,1041	0.1570
4	0.0630	0.0806	0.0994	0.1389	0.2071
5	0.0800	0.1022	0.1245	0.1689	0.2578
6	0.0937	0.1200	0.1484	0.2042	0.3103
7	0.1067	0.1378	0.1689	0.2311	0.3556
8	0.1218	0.1569	0.1948	0,2692	0.4107
9	0.1334	0.1734	0.2134	0.2934	0.4534
10	0.1503	0.1943	0.2417	0.3349	0.5122
11	0.1600	0.2089	0.2578	0.3556	0.5512
12	0.1785	0.2313	0.2882	0,4001	0.6128
13	0.1867	0.2445	0.3023	0.4178	0.6490
14	0.2000	0.2623	0.3245	0.4489	0.6979
15	0.2134	0.2800	0.3467	0.4801	0.7468
16	0.2350	0.3053	0.3812	0.5305	0.8141
17	0.2400	0.3156	0.3912	0.5423	0.8446
18	0.2534	0.3334	0.4134	0,5734	0.8934
19	0.2667	0.3512	0.4356	0.6045	0.9423
20	0.2800	0.3689	0.4578	0.6356	0.9912
21	0.2934	0.3867	0.4801	0.6668	1.0401
22	0.3067	0.4045	0.5023	0.6979	1.0890
23	0.3200	0.4223	0.5245	0.7290	1,1379
24	0.3479	0.4535	0.5673	0.7911	1.2165
25	0.3467	0.4578	0.5690	0.7912	1.2357
	0.3467	0.4578	0.5912	0.8223	1.2846
26 27	0.3734	0.4934	0.6134	0.8534	1.3335
28	0.3734	0.5112	0.6356	0.8846	1.3824
	0.3867	0.5290	0.6579	0.9157	1.4313
29 30	0.4134	0.5467	0.6801	0.9468	1.4802
31	0.4267	0.5645	0.7023	0.9779	1.5291
32	0.4267	0.5823	0.7245	1.0090	1.5780
33	0.4534	0.6001	0.7468	1.0401	1.6269
33	0.4554	0.6179	0.7690	1.0712	1.6758
35	0.4801	0.6356	0.7912	1.1024	1.7247
36	0.4934	0.6534	0.8134	1.1335	1.7736
37	0.5067	0.6712	0.8357	1.1646	1.8225
38	0.5201	0.6890	0.8579	1.1957	1.8713
39	0.5334	0.7068	0.8801	1.2268	1.9202
40	0.5467	0.7245	0.9023	1.2579	1.9691
41	0.5601	0.7423	0.9246	1.2891	2.0180
42	0.5734	0.7601	0.9468	1,3202	2.0669
43	0.5867	0.7779	0.9690	1.3513	2.1158
44	0.6001	0.7957	0.9912	1.3824	2.1647
45	0.6134	0.8134	1.0135	1.4135	2.2136
46	0.6267	0.8312	1.0357	1.4446	2.2625
47	0.6401	0.8490	1.0579	1.4757	2.3114
48	0.6887	0.8936	1.1186	1.5587	2.4186

		F	POS					
Pair Instrumentation Over all Screen Cables								
No. of Pairs	0.5 sq.mm	0.75 sq.mm	1.0 sq.mm	1.5 sq.mm	2.5 sq.mm			
Cable size in								
sq.mm								
1	0.1490	0.1565	0.1635	0.1735	0.1930			
2	0.2190	0.2335	0.2470	0.2665	0.2595			
3	0.2360	0.2545	0.2690	0.2900	0.2680			
4	0.2390	0.2580	0.2715	0.2945	0.2830			
5	0.2630	0.2820	0.2420	0.2805	0.3155			
6	0.2840	0.3160	0.2805	0.2995	0.3430			
7	0.2840	0.2595	0.2805	0.2995	0.3430			
8	0.3235	0.2930	0.3030	0.3315	0.3780			
9	0.2805	0.3180	0.3290	0.3590	0.4205			
10	0.2970	0.3215	0.3455	0.3755	0.4385			
11	0.3005	0.3255	0.3490	0.3805	0.4435			
12	0.3055	0.3440	0.3680	0.3880	0.4520			
13	0.3265	0.3530	0.3780	0.4105	0.4785			
14	0.3265	0.3530	0.3780	0.4105	0.4785			
15	0.3490	0.3765	0.4015	0.4365	0.5195			
16	0.3490	0.3765	0.4015	0.4365	0.5195			
17	0.3590	0.4005	0.4140	0.4635	0.5470			
18	0.3590	0.4005	0.4265	0.4635	0.5470			
19	0.3590	0.4005	0.4265	0.4635	0.5470			
20	0.3830	0.4240	0.4535	0.4920	0.5760			
21	0.3830	0.4240	0.4535	0.4920	0.5760			
22	0.4065	0.4520	0.4785	0.5310	0.6190			
23	0.4065	0.4520	0.4810	0.5310	0.6190			
24	0.4305	0.4770	0.5070	0.5595	0.6475			
25	0.4305	0.4770	0.5070	0.5595	0.6475			
	0.4305	0.4770	0.5070	0.5595	0.6475			
26	0.4355	0.4820	0.5245	0.5660	0.6700			
27 28	0.4570	0.5045	0.5345	0.5895	0.6950			
	1	0.5045	0.5345	0.5895	0.6950			
29	0.4570		0.5345	0.5895	0.6950			
30	0.4570	0.5045			0.0950			
31	0.4795	0.5285	0.5595	0.6150	0.7225			
32	0.4820	0.5285	0.5595	0.6150				
33	0.4820	0.5285	0.5595	0.6150	0.7225			
34	0.4920	0.5520	0.5835	0.6410	0.7500			
35	0.4920	0.5520	0.5835	0.6410				
36	0.4920	0.5520	0.5835	0.6410	0.7500			
37	0.4920	0.5520	0.5835	0.6410	0.7500 0.7805			
38	0.5145	0.5760	0.6225	0.6550	0.7805			
39	0.5145	0.5760	0.6225	0.6550	0.7805			
40	0.5145	0.6025	0.6225	0.6975	0.8230			
41	0.5395	0.6025	0.6475	0.6975	0.8230			
43	0.5395	0.6025	0.6475	0.6975	0.8230			
44	0.5635	0.6265	0.6735	0.7250	0.8540			
45	0.5635	0.6265	0.6760	0.7250	0.8540			
46	0.5635	0.6265	0.6760	0.7250	0.8540			
47	0.5635	0.6265	0.6760	0.7250	0.8540			
48	0.5635	0.6265	0.6760	0.7375	0.8665			

the state of the s

 $\mathbf{E} = \{ -(-1)^{-1}, \dots \}$

•

Steel Factors for Instrumentation Cables - FeF Fe PIS Pair Instrumentation Individual and Over all Screen Cables No. of Pairs 0.5 sq.mm 0.75 sq.mm 1.0 sq.mm 1.5 sq.mm 2.5 sq.mm Cable size in sq.mm 0.1980 0.2070 0.1880 0.2220 0.2410 1 0.2755 0.2315 0.2460 0.2595 2 0.2815 0.2690 0.2830 0.2505 0.2820 0.2495 4 0.2645 0.2830 0:2420 0.2805 0.3155 0.3430 0.2895 0.2730 0.2805 0.3005 5 6 7 0.3730 0.2755 0.2980 0.3005 0.3280 0.3005 0.3730 0.2755 0.2980 0.3280 8 0.2980 0.3215 0.3455 0.3740 0.4230 0.4685 0.4040 9 0.3230 0.3490 0.3730 0.4885 10 0.3405 0.3655 0.3765 0.4215 0.3815 11 0.3430 0.3690 0.4265 0.4945 12 0.3490 0.3765 0.4015 0.4470 0.5160 0.3990 0.4255 0.4720 0.5420 13 0.3715 14 15 0.4720 0.5420 0.3990 0.3715 0.4255 0.5020 0.5720 0.4240 0.4510 0.3955 0.5720 0.4240 0.5020 16 0.3955 0.4510 0.5295 0.6150 17 0.4190 0.4495 0.4795 0.6150 0.4795 0.5295 0.4495 18 0.4190 0.5295 0.6150 0.4795 0.4190 0.4495 19 0.6450 20 21 0.5060 0.5570 0.4445 0.4770 0.4445 0.4895 0.5060 0.5695 0.6450 0.5870 0.6885 0.4695 0.5045 0.5345 22 0.6885 0.5045 0.5345 0.5870 23 0.4695 24 25 0.7210 0.4970 0.5310 0.5620 0.6285 0.7210 0.4970 0.5310 0.5620 0.6285 0.7210 26 0.4970 0.5310 0.5620 0 6285 27 0.5035 0.5495 0.5810 0.6360 0.7410 28 0.5135 0.5610 0.6050 0.6610 0.7690 29 0.5135 0.5610 0.6050 0.6610 0.7690 30 0.5260 0.5610 0.6050 0.6610 0.7690 31 0.5495 0.5845 0,6300 0.6885 0.7990 32 0.5495 0.5845 0.6300 0.6885 0.7990 33 0.5495 0.5845 0.6300 0.6885 0.7990 34 0.5735 0.8225 0.6585 0.7285 0.8405 35 0.5735 0.6225 0.6585 0.7285 0.8405 0.8405 36 0.5735 0,6225 0.6585 0.7285 0.5735 0.5990 0.7285 37 0.6225 0,6585 0.8405 0.6485 0.6850 0.8740 38 0.6485 0.6850 0.7575 0.8740 39 0.5990 0.5990 0.6485 0.6850 0.7575 0.8740 40 41 0.6250 0.6775 0.7135 0.7880 0.9180 42 0.6250 0.6775 0.7135 0.7880 0.9180 43 0.6250 0.6775 0.7135 0.7880 0.9180 0.8165 0.9495 44 0.6485 0.7050 0.7410 0.9495 0.8165 0.7050 45 46 47 48 0.6485 0.7410 0.9495 0.7410 0.8165 0.7050 0.6485 0.9495 0.8165 0.6485 0.7050 0.7410 0.9620 0.7050 0.7535 0.8290 0.6485

1 1 1 .

CIN No. U99999MH1970GAPO14629

Indian Electrical & Electronics Manufacturer's Association

501, Kakad Chambers 132, Dr. A. B. Road, Worli, Mumbal - 400 018.

INDIA.

P +91 22 2493 0532 F +91 22 2493 2705 E mumbal@leema.org w www.jeema.org

Cir. No. 35/DIV/ CAB/05/

24th April 2018

To Members of the Cable Division, Utilities, Railways & Listed purchasing organizations

Sub: Correction in PV formulae of LT XLPE Power Cable and addition of factors for HT XLPE Power Cables

We have recently published revised Price Variation Clause for LT&HT XLPE Power Cables and made it effective from $1^{\rm st}$ November 2017 vide Cir. No.111/DIV/CAB/05 dated $5^{\rm th}$ December 2017

While replying to a query of a buyer it is observed that the polymer factor for LT XLPE Power Cables (both aluminium and copper) was incorrectly represented by Table P2.

We have now corrected the anomaly by correcting the PV formulae of LT XLPE Aluminium and Copper Insulated Cables (SI. No. D & E) by representing Polymer factor by Table L2.

We have also worked out factors for XLPE, Copper and Steel for 3 core HT XLPE Power Cables for 500 and 630 sq.mm.

We now enclose complete PV clause of Cable by including all the PV formulae of different types of power cable (SI. No. A to I), polymer factor Table L2 and updated XL4, H2 and H5 Table of factors for your perusal & record.

We request to replace PV clause of Cable already circulated vide Cir. 111/DIV/CAB/05 dated 5th December 2017 with the enclosed PV clause in your records for future use.

Senior Director

Encl: as above

Indian Electrical & Electronics Manufacturer's Association

501, Kakad Chambers 132, Dr. A. B. Road, Worli, Mumbal - 400 018. P +91 22 2493 0532 F +91 22 2493 2705 E mumbai@leema.org w www.leema.org

IEEMA (PVC)/CABLE(R-1)/2017

Effective from: 1st November 217

INDIA

Material Price Variation Clause For PVC And XLPE Insulated Cables

The Price quoted/confirmed is based on the input cost of raw materials/components as on the date of quotation, and the same is deemed to be related to the prices of raw materials as specified in the price variation clause given below. In case of any variation in these prices, the price payable shall be subject to adjustment up or down in accordance with the formulae provided in this document.

Terms used in price variation formulae:

P Price payable as adjusted in accordance with above appropriate formula (in Rs/Km)

Po Price quoted/confirmed (in Rs/Km)

ALUMINIUM

AIF Variation factor for aluminium

Al Price of Aluminium. This price is as applicable of first working day of the month, one month prior to the date of delivery.

Alo Price of aluminium. This price is as applicable on first working day of the month, one month prior to the date of tendering.

COPPER

CuF Variation factor for copper

Cu Price of CC copper rods. This price is as applicable on first working day of the month, one month prior to the date of delivery.

Cuo Price of CC copper rods. This price is as applicable on first working day of the month, one month prior to the date of tendering.

PVC COMPOUND

PVCc price of PVC compound. This price is as applicable on first working day of the month, one month prior to the date of delivery.

PVCco Price of PVC compound. This price is as applicable on first working day of the month, one month prior to the date of tendering.

CCFAl Variation factor for PVC compound/Polymer for aluminum conductor cable.

CCFCu Variation factor for PVC compound/Polymer for copper conductor cable.

HEAD OFFICE - DELHI Rishyamook Building, First Floor, 85 A, Panchkulan Road, New Delhi – 110001, INDIA. P +91 11 2336 3013 / 14 • F +91 11 2336 3015 • E delhi@leema.org • W www.ieema.org

IEEMA (PVC)/CABLE(R-1)/2017 XLPE COMPOUND

Indian Electrical & Electronics Manufacturer's Association

501, Kakad Chambers 132, Dr. A. B. Road, Worli, Mumbal - 400 018.

P +91 22 2493 0532 F +91 22 2493 2705 E mumbal@icema.org w www.icema.org

Effective from: 1st November 217

Cc price of XLPE compound. This price is as applicable on first working day of the month, one month prior to the date of delivery.

Cco Price of XLPE compound. This price is as applicable on first working day of the month, one month prior to the date of tendering.

XLFAL Variation factor for XLPE compound for aluminum conductor cable. XLFCU Variation factor for XLPE compound for Copper conductor cable.

STEEL

FeF Variation factor for steel

FeW Variation factor for round wire steel armouring

Fe Price of Steel Strips/steel wire. This price is as applicable on the first working

day of the month, one month prior to the date of delivery.

Feo Price of steel strips/steel wire. This price is as applicable on first working day of

the month, one month prior to the date of tendering.

The above prices and indices are as published by IEEMA vide Circular reference IEEMA (PVC)/CABLE R(1)/--/- prevailing as on 1^{st} working day of the month i.e. one month prior to the date of tendering.

The date of delivery is the date on which the cable is notified as being ready for inspection/dispatch (in the absence of such notification, the date of manufacturer's dispatch note is to be considered as the date of delivery) or the contracted delivery date (including any agreed extension thereto), whichever is earlier.

Notes

- (a) All prices of raw materials are exclusive of GST amount.
- (b) All prices excluding Aluminium & Copper are as on first working day of the month.
- (c) The details of prices are as under:

- Price of Aluminium is LME average Cash SELLER Settlement price of Primary Aluminium in US\$ per MT as published by London Metal Bulletin (LME) including Premium for Aluminium Ingot in US\$ per MT is converted in Indian Rs./MT.
- 2. Price of PVC Compound (in Rs/MT) is the ex-works price, as quoted by the manufacturer.
- 3. Price of XLPE Compound (in Rs/MT) is the ex-works price, as quoted by the manufacturer
- 4. Price of CC copper rods (in Rs/MT) is ex-works price as quoted by the primary producer.
- Price of galvanized steel strip / steel wire (in Rs/MT) is ex-works price as quoted by the manufacturer for Round steel Wire and Flat steel strip (the relevant price of steel strip or steel wire is to be selected depending upon the type of armouring of the cable).

HEAD OFFICE - DELHI Rishyamook Building, First Floor, 85 A, Panchkulan Road, New Delhi - 110001, INDIA. P. +91 11 2336 3013 / 14 ◆ F. +91 11 2336 3015 ◆ É delhi@ieema.org ◆ W www.ieema.org

Indian Electrical & Electronics Manufacturer's Association

501, Kakad Chambers 132, Dr. A. B. Road, Worli, Mumbal - 400 018.

P +91 22 2493 0532 F +91 22 2493 2705 E mumbal@leema.org

w www.leema.org

IEEMA (PVC)/CABLE(R-1)/2017

017 Effective from: 1st November 217

Price variation formulae for 'Power Cables'

A. Aluminum conductor PVC insulated 1.1 kV power cables

P = Po + AIF (AL - Alo) + CCFAI (PVCc - PVCco) + FeF (Fe - Feo)

For unarmourd multicore cables (without steel armour); FeF = 0

<u>Table References:</u>

ALP Aluminium conductor in single core unarmoured & multicore cables
P1 Aluminium conductor aluminium armour in single core armoured cables

P2 PVC compound P3 Steel armour

B. Copper conductor PVC insulated 1.1 kV power cables

For steel armoured cables; AIF = 0 For aluminium armoured cables; FeF = 0 For unarmoured cables; FeF, AIF = 0

Tables References:

CUP Copper conductor
P2 PVC compound
P3 Steel armour
P4 Aluminium armour

C. Copper conductor PVC insulated 1.1 kV control cables

P = Po + CuF (Cu - Cuo) + CCFCu (PVCc-PVCco) + FeF (Fe-Feo)

For unarmoured cables; FeF = 0

Tables References:

CUC Copper conductor
P5 PVC compound
P6 Steel armour

D. Aluminum conductor XLPE insulated 1.1 kV power cables

P = Po + AIF (AL - Alo) +XLFAL(CC-Cco)+ CCFAI (PVCc - PVCco) + FeF (Fe - Feo)

For unarmourd multicore cables (without steel armour); FeF = 0 <u>Table References:</u>

ALP Aluminium conductor in single core unarmoured & multicore cables

P1 Aluminium conductor aluminium armour in single core armoured cables

P3 Polymer (CCFAI)
P3 Steel armour

XL1 XLPE Compound (XLFAL)

E. Copper conductor XLPE insulated 1.1 kV power cables

P = Po + CuF (Cu - Cuo) + XLFCU (CC-Cco)+ CCFCu (PVCc - PVCco) + Fef (Fe - Feo) + AIF (Al - Alo)

partners in Implementa

I Bir Birth

For steel armoured cables; AIF = 0 For aluminium armoured cables; FeF = 0

HEAD OFFICE - DELHI

Rishyamook Building, First Floor, 85 A, Panchkulan Road, New Delhi – 110001, INDIA.

P +91 11 2336 3013 / 14 ◆ F +91 11 2336 3015 ◆ E delhi@ieema.org ◆ W www.ieema.org

Indian Electrical & Electronics Manufacturer's Association

Authorized Signatory

501, Kakad Chambers 132, Dr. A. B. Road, Worll, Mumbai - 400 018.

P +91 22 2493 0532 F +91 22 2493 2705 E mumbai@jeema.org

w www.leema.org

IEEMA (PVC)/CABLE(R-1)/2017

Effective from: 1st November 217

For unarmoured cables: FeF, AIF = 0

Tables References:

CUP Copper conductor
L2 Polymer (CCFCu)
P3 Steel armour
P4 Aluminium armour
XL1 XLPE Compound (XLFCu)

F. Copper conductor XLPE insulated 1.1 kV control cables

P = Po + CuF (Cu - Cuo) + XLFCU (CC-Cco)+ CCFCu (PVCc-PVCco) + FeF (Fe-Feo)

For unarmoured cables; FeF = 0

Tables References:

CUC Copper conductor
P5 PVC compound
P6 Steel armour
XL2 XLPE Compound

G. For Aluminium conductor XLPE insulated 3.3 to 33 kV power cables

P = Po + AIF (AI - Alo) + XLFAL(CC-Cco)+CCFAI (PVCc - PVCco) + FeF (Fe - Feo)

For unarmoured multicore cables (without steel armour); FeF = 0

Table Refernces:

ALP Aluminium conductor in single core unarmoured & multicore cables
H1 Aluminium conductor + aluminium armour in single core armoured cables

H1 Aluminiu H2 Polymer

H3/H5 Steel armour (Flat/Round)

XL3/XL4 XLPE Compound (Single core / Multicore)

H. Copper conductor XLPE insulated 3.3 to 33 kV power cables

P = Po + CuF (Cu - Cuo) + XLFCU (CC-Cco)+ CCFCu (PVCc - PVCco) + FeF (Fe - Feo) + AIF (AI - Alo)

For steel armoured cables; AIF = 0 For aluminium armoured cables; FeF = 0 For unarmoured cables; FeF, AIF = 0

Table References:

CUP Copper conductor

H2 Polymer

H3/H5 Steel armour (Flat/Round)
H4 Aluminium armour

XL3/XL4 XLPE Compound (Single core /Multicore)

1. Copper conductor XLPE insulated 1.0 and 1.5 kV Solar PV DC cables

P = Po + CuF (Cu - Cuo)
Table CUsdo Copper Conductor

roud partners in implementation

MISSION PLAN

HEAD OFFICE - DELHI

Rishyamook Building, First Floor, 85 A, Panchkuian Road, New Delhi – 110001, INDIA. P +91 11 2336 3013 / 14 • F +91 11 2336 3015 • E delhi@ieema.org • W www.ieema.org

Effective from: 1st November 217

TABLE ALP

VARIATION FACTOR FOR ALUMINIUM (AIF) POWER CABLES WITH ALUMINIUM CONDUCTOR (EXCLUDING SINGLE CORE ARMOURED CABLES)

Nominal Cross Sectional Area (in Sq. mm.)	1 core	2 core	3 core	3.5 core	4 core
2.5	0.007	0.014	0.021		0.028
4	0.011	0.023	0.034		0.046
6	0.017	0.034	0.052	-	0.069
10	0.029	0.053	0.087	-	0.116
16	0.046	0.091	0.137	- 1	0.183
25/16	0.073	0.146	0.219	0.262	0.292
35/16	0.101	0.202	0.302	0.345	0.404
50/25	0.137	0.273	0.410	0.478	0.547
70/35	0.197	0.395	0.593	0.687	0.791
95/50	0.274	0.548	0.821	0.949	1.095
120/70	0.346	0.691	1.035	1.221	1.382
150/70	0.425	0.853	1.279	1.464	1.706
185/95	0.533	1.070	1.605	1.861	2.140
225/120	0,655	1.310	1.965	2.287	2.620
240/120	0.703	1.400	2.099	2,421	2.799
300/150	0.879	1.757	2.635	3.033	3.514
400/185	1.126	2.249	3.374	3.873	4.498
500	1.418	2.838	4.256		5.675
630	1.828	3.663	5.494	-	7.326
800 .	2.340	4.679	7.018	~	9.357
1000	2.951	5.890	8.834	- 1	11.779

Effective from: 1st November 217

TABLE CUP

VARIATION FACTOR FOR COPPER CONDUCTOR (CUF) POWER CABLES WITH COPPER CONDUCTOR

Nominal Cross	1 core	2 core	3 core	3.5 core	4 core
Sectional Area (in					
Sq. mm.)					
2.5	0.023	0.046	0.069	- .	0.092
4	0.036	0.076	0.112	- :	0.151
6	0.056	0.112	0.171	-	0.227
10	0.095	0.174	0.286	_	0.382
16	0.151	. 0.299	0.451	-	0.602
25/16	0.240	0.480	0.720	0.862	0.960
35/16	0.332	0.664	0,993	1.135	1,329
50/25	0.451	0.898	1.348	1.572	1.799
70/35	0.648	1.299	1.950	2.260	2.602
95/50	0.901	1.802	2.700	3.121	3.601
120/70	1.138	2.273	3.407	4.016	4.545
150/70	1.398	2.806	4.207	4.815	5.611
185/95	1.753	3.519	5.279	6.121	7.038
225/1.20	2.154	4.309	6.463	7.522	8.617
240/120	2.312	4.605	6.904	7.963	9.206
300/150	2.891	5.779	8.667	9.976	11.558
400/185	3.703	7.397	11.097	12.738	14.794
500	4.664	9.334	13.998		18.665
630	6.012	12.048	18.070	_	24.095
800	7.696	15.389	23.082	-	30.775
1000	9.706	19.372	29.055	-	38.741

TABLE CUsdo

VARIATION FACTOR FOR COPPER CONDUCTOR (CUF) 1.0 & 1.5KV Solar PV DC Cables with Copper Conductor

Cable Size in sq.mm.	Copper content in MT/km
2.5	0.023
4	0.038
6	0.058
10	0.090

Effective from: 1st November 217

TABLE CUC

VARIATION FACTOR FOR COPPER CONDUCTOR (CUF) CONTROL CABLES WITH COPPER CONDUCTOR

No of Cores	Core size 1.5 sq mm	Core size 2.5 sq mm
2	0.026	0.047
3	0.039	0.070
4	0.052	0.094
5	0.065	0.117
6	0.078	0.141
7	0.091	0.164
8	0.110	0.182
9	0.117	0.205
10	0.130	0.235
12	0:157	0.282
14	0.183	0.329
16	0.209	0.376
18	0.246	0.410
19	0.248	0.446
20	0.260	0.456
24	0.313	0.563
27	0.352	0.634
30	0.391	0.704
37	0.483	0.869
44	0.573	1.033
52	0.678	1.221
61	0.796	1.432

Effective from: 1st November 217

VARIATION FACTOR FOR ALUMINIUM (AIF) ALUMINIUM ARMOURED SINGLE CORE PVC INSULATED 1.1 KV CABLES

Nominal cross sectional area (in Sq.mm)	Aluminium factor for Aluminium armoured cable with aluminium conductor
4	0.0685
6	0.0795
10	0:1017
16	0.1303
25	0.1693
35	0.2090
50	0.2597
70	0.3360
95	0.4567
120	0.5443
150	0.6427
185	0.7743
240	0.9737
300	1.2582
400	1.5502
500	1.8958
630	2.3650
800	2.9306
1000	3.7666

Effective from: 1st November 217

VARIATION FACTOR FOR PVC COMPOUND (CCFAI/CCFCu) PVC INSULATED 1.1 KV POWER CABLES WITH COPPER/ALUMINIUM CONDUCTOR

Nominal cross Sectional Area (in Sq. mm)	1 core	2 cc	ore	3 core		3.5	ore	4 core	
	Unarm	Unarm	arm	Unarm	arm	Unarm	arm	Unarm	arm
2.5	0.079	0.125	0.139	0.141	0.157		-	0.161	0.179
4	0.094	0.140	0.156	0.164	0.182	-	-	0.188	0.209
6	0.101	0.154	0.171	0.179	0.199	-	-	0.198	0.220
10	0.114	0.194	0.216	0.214	0.238	-	-	0.249	0.277
16	0.142	0.234	0.246	0.279	0.290	-	-	0.328	0.345
25	0.171	0.288	0.303	0.364	0.383	0.422	0.444	0.443	0.466
35	0.189	0.321	0.338	0.403	0.429	0.489	0.515	0.498	0.524
50	0.211	0.411	0.433	0.508	0.535	0.613	0.645	0.647	0.681
70	0.241			0.613	0.645	0.707	0.744	-	-
95	0.284	-	-	0.795	0.811	0.908	0.927	-	-
120	0.339	-	-	0.866	0.884	1.024	1.045	÷	-
150	0.388	-	-	1.070	1.092	1.289	1.315	-	-
185	0.450	Tem	-	1.310	1.337	1.499	1.530	-	-
225	0.521	~	-	1.586	1.618	1.840	1.878	<u> </u>	-
240	0.534	-	7	1.649	1.683	1.990	2.031	_	-
300	0.653	-	-	2.007	2.048	2.361	2.409	-	
400	0.770	-	-	2.437	2.487	2.616	2.669		-
500	0.936	-		3.117	3.181	3.687	3.762	-	_
630	1.175	-	-		-	-	-	-	-
800	1.433	-	-	•	-	<u>.</u> .	-	-	+
1000	1.642	-	-		-		-	*	-

Effective from: 1st November 217

VARIATION FACTOR FOR STEEL (FeF) PVC INSULATED 1.1 KV POWER CABLES WITH COPPER/ALUMINIUM CONDUCTOR

Nominal Cross sectional Area	2 core	Shape	3 core	Shape	3 ½ core	Shape	4 core	Shape
(in Sq. mm)	20			8				1
4	0.305	W	0.335	W		-	0.363	W
6	0.348	W	0.363	. W .			0.407	W
10	0.392	W	0.407	W		-	0.293	·F
16	0.235	F	0.293	F	-	-	0.323	F
25	0.293	F	0.352	F	0.382	F	0.382	F
35	0.323	F	0.382	F	0.411	F	0.440	F
50	0.382	F	0.440	F	0.469	F	0.499	F
70	0.411	F	0.499	F	-	F	0.587	F
95	0.499	F	0.587	F	0.616	F	0.645	F
120	0.528	F	0.616	F	0.675	F.	0.731	F
150	0.587	F	0.675	F	0.731	F	0.790	F
185	0.645	F	0.761	F	0.820	F	0.879	F
240	0.731	F	0.879	F	0.937	F	0.996	F
300	0.820	F	0.966	F	1.055	F	1.113	F
400	0.937	F	1.083	F	1.172	F	1.231	F
500	1.055	F	1.231	F	1.348	F	1.406	F
630	1.172	F	*	-	-		1.	-

IEEMA (PVC)/CABLE(R-1)/2017 TABLE P3 (Additional)

Effective from: 1st November 217

VARIATION FACTOR FOR ROUND WIRE 'W' STEEL (FeF) PVC INSULATED 1.1 KV POWER CABLES WITH COPPER/ALUMINIUM CONDUCTOR

Nominal Cross	2 Core	3 Core	3 .5 Core	4 Core	
Sectional Area	and the same of th				
(in sq. mm)					
1.5	0.247	0.259		0.28	
2.5	0.273	0.289		0.32	
4	0.305	0.335		0.36	
6	0.348	0.363		0.40	
10	0.392	0,407		0.53	
16	0.439	0.523	0.014	0.57	
25	0.526	0.625	0.664	0.68	
35	0.591	0.685	0.729	0.76	
50	0.661	0.790	0.864	1.10	
70	0.745	1.122	1.200	1.25	
95	1.085	1.286	1.376	1.44	
120	1.147	1.386	1.479	1.56	
150	1.267	1.526	1.684	2.17	
185	1.403	2.090	2.315	2.42	
240	1.994	2.397	2.641	2.72	
300	2.180	2.642	3.670	3.84	
400	2.987	3.728	4.126	4.29	
500	3.517	4.226	5.958	6.30	
630	4.774	6.018	6.737	7.14	

Effective from: 1st November 217

TABLE P4

VARIATION FACTOR FOR ALUMINIUM (AIF) PVC INSULATED 1.1 KV POWER CABLES WITH COPPER CONDUCTOR

Nominal Cross Sectional Area (in Sq. mm)	Aluminium Factor for Aluminium armoured cable with copper conductor
4	0,058
6	0.063
10	0.073
16	0.084
25	0.096
35	0.108
50	0.123
70	0.139
95	0.183
120	0.198
150	0.218
185	0.241
240	0.271
300	0.379
400	0.424
500	0.478
630	0.537
800	0.591
1000	0.816

Effective from: 1st November 217

TABLE P5

VARIATION FACTOR FOR PVC COMPOUND (CCFCu) PVC INSULAYTED CONTROL CABLES WITH COPPER CONDUCTOR

No of cores	Core size	1.5 sq mm	Core size 2.5 sq mm		
	Unarm	Arm	Unarm	Arm	
2	0.118	0.121	0.125	0.139	
3	0.121	0.131	0.141	0.157	
4	0.137	0.152	0.161	0.179	
5	0.157	0.174	0.187	0.206	
6	0.179	0.199	0.234	0.260	
7	0.179	0.199	0.234	0.260	
8	0.193	0.215	0.292	0.325	
9	0.216	0.241	0.300	0.335	
10	0.236	0.262	.0.303	0.337	
12	0.249	0.277	0.334	0.371	
14	0.311	0.327	0.389	0.409	
16	0.344	0.362	0.435	0.458	
18	0.352	0.371	0.474	0.500	
19	0.375	0.395	0.476	0.501	
20	0.391	0.412	0.519	0.546	
24	0.457	0.481	0.584	0.615	
27	0.491	0.517	0.631	0.664	
30	0.529	0.557	0.706	0.743	
37	0.615	0.647	0.835	0.879	
. 44	0.739	0.778	1.019	1.026	
.52	0.845	0.889	1.100	1.158	
61	0.952	1.002	1.246	1.312	

Effective from: 1st November 217

VARIATION FACTOR FOR STEEL (FeF) PVC INSULATED CONTROL CABLES WITH COPPER CONDUCTOR

No of cores	Core size 1.5 sq mm	Shape of armour	Core size 2.5 sq mm	Shape of armour	
2	0.243	W	0.277	W	
3	0.257	W	0.289	W	
. 4	0.277	W	0.314	W	
5	0.303	W	0.342	W	
6	0.329	W	0.379	W	
7	0.329	W	0.379	W	
8	0.341	W	0.456	W	
9	0.383	W	0.275	F	
10	0.408 W		0.325	F	
12	0.289	F	0.342	F	
14	0.306	F .	0.360	F	
16	0.317	F	0.372	F	
18	0.332	F	0.350	F	
19	0.343	F	0.397	·F	
20	0.368	F	0.400	F	
24	0.398	F	0.475	F	
27	0.414	F	0.478	Ė	
30	0.425	F	0.503	F	
37	37 0.461		0.548	F	
44	0.507	F	0.601	F	
52	0.556 F 0.641			F	
61	0.585	F	0.685	F	

IEEMA (PVC)/CABLE(R-1)/2017 TABLE P6 (Additional)

Effective from: 1st November 217

VARIATION FACTOR FOR ROUND WIRE 'W' STEEL (FeF) PVC INSULATED CONTROL CABLES WITH COPPER CONDUCTOR

No. of Cores	Core size 1.5 sq mm	Core size 2.5 sq mm
2	0.243	0.273
3	0,257	0.289
4	0.277	0.314
5	0.303	0.342
6	0.329	0.379
7	0.329	0.379
8	0.341	0,456
.9	0.383	0,508
10	0.408	0.535
12	0.510	0.572
14	0.546	0.625
16	0.581	0.660
19	0.608	0.696
24	0.714	0.819
25	0.679	0.798
27	0.732	0.837
28	0.696	0.815
30	0.758	0.881
33	0.747	0.883
37	0.820	1,217
44	0.926	1.355
48	1.122	1.308
50	1.122	1.308
52	1.149	1.361
56	1.202	1.388
61	1,299	1,520

Effective from: 1st November 217

TABLE L2

VARIATION FACTOR FOR POLYMER (CCFAI / CCFCu) XLPE INSULATED 1.1 KV POWER CABLES WITH COPPER / ALUMINIUM CONDUCTOR

Nominal Cross Sectional	1 core	e 2 core		3 c	3 core		core	4 core	
Area (in Sq. mm)	Unarm	Unarm	Arm	Unarm	Arm	Unarm	Arm	Unarm	Arm
2.5	0.055	0.163	0.175	0.166	0.177	-	-	0.177	0.188
4	0.075	0.201	0.204	0.205	0.213	-	_	0.218	0.213
-6	0.085	0.213	0.234	0.205	0.230		-	0.242	0.232
10	0.082	0.252	0.280	0.217	0.251	-	-	0.285	0.298
16	0.089	0.278	0.341	0.289	0.246	-	-	0.300	0.279
25	0.101	0.307	0.278	0.276	0.247	0.295	0.264	0.331	0.290
35	0.109	0.330	0.319	0.305	0.270	0.328	0.292	0.368	0.319
50	0.124	0.482	0.685	0.348	0.311	0.372	0.335	0.422	0.394
70	0.146	0.354	0.335	0.469	0.397	0.489	0.420	0.528	0.464
95	0.163	0.436	0.389	0.504	0.441	0.544	0.471	0.591	0.523
120	0.176	0.475	0.421	0.556	0.498	0.599	0.538	0.722	0.656
150	0.217	0.510	0.490	0.690	0.611	0.717	0.633	0.840	0.762
185	0.236	0.631	0.608	0.836	0.738	0.854	0.756	1.007	0.899
240	0.273	0.750	0.726	1.002	0.842	1.079	0.952	1.238	1.119
300	0.303	0.919	0.887	1.161	1.012	1.170	1.031	1.457	1.414
400	0.372	1.093	1.040	1.376	1.283	1.545	1.379	1.778	1.626
500	0.413	1.342	-	1.568	1.400	1.806	1.456	-	
630	0.469	1.546	-	-	-	-	-	-	_
800	0.569	-	-	-	-	-	-	-	
1000	0.667	-	-	-	-	-	-		-

Effective from: 1st November 217

TABLE XL1 VARIATION FACTOR FOR XLPE COMPOUND (XLFAL/XLFCU) XLPE INSULATED 1.1 KV POWER CABLES WITH COPPER/ALUMINIUM CONDUCTOR

Nominal cross Sectional Area (in Sq. mm)	1 core		2 core		3 core		3.5 core		4 core	
	Unarm	Arm	Unarm	Arm	Unarm	arm	Unarm	Arm	Unarm	arm
2.5	0.007	0.010	0.014	0.014	0.021	0.021			0.028	0.028
4	0.009	0.012	0.018	0.018	0.027	0.027			0.036	0.036
6	0.010	0.015	0,022	0.022	0.033	0.033			0.043	0.043
10	0.013	0.018	0.025	0.025	0.039	0.039			0,053	0.053
16	0.016	0.023	0.034	0.034	0.049	0.049			0.065	0.065
25	0.021	0.030	0.048	0.048	0.070	0.070	0.084	0.084	0.093	0.093
35	0.025	0.035	0.059	0.059	0.084	0.084	0.099	0.099	0.112	0.112
50	0.033	0.044	0.075	0.075	0.108	0.108	0.130	0.130	0.144	0.144
70	0.042	0.054	0.095	0.095	0.137	0.137	0.160	0.160	0.179	0.179
95	0.048	0.062	0.110	0.110	0.160	0.160	0.190	0.190	0.211	0.211
120	0.060	0.076	0.138	0.138	0.200	0.200	0.239	0.239	0.266	0.266
150	0.078	0.095	0.180	0.180	0.259	0.259	0.296	0.296	0.344	0.344
185	0.097	0.116	0.224	0.224	0.324	0.324	0.369	0.369	0.430	0.430
240	0.116	0.137	0.266	0.266	- 0.388	0.388	0.446	0.446	0.518	0.518
300	0.138	0.164	0.325	0.325	0.467	0.467	0.540	0.540	0.620	0.620
400	0.175	0.214	0.357	0.357	0.536	0.536	0.619	0.619	0.714	0.714
500	0.217	0.260	0.440	0.440	0.660	0.660	0.769	0.769	0.880	0.880
630	0.265	0.318	0.542	0.542	0.814	0.814	0.941	0.941	1.085	1.085
800	0.323	0.389	80			8				
1000	0.375	0.444								

Effective from: 1st November 217

TABLE:XL2 VARIATION FACTOR FOR XLPE COMPOUND (XLFCU) XLPE INSULAYTED CONTROL CABLES WITH COPPER CONDUCTOR

No of cores	Core size	1.5 sq mm	Core size 2.5 sq mm		
	Unarm	Arm	Unarm	Arm	
2.	0.010	0.010	0.012	0.012	
3	0.016	0.016	0.018	0.018	
4	0.021	0.021	0.025	0.025	
5	0.026	0.026	0.031	0.031	
6	0.031	0.031	0.037	0.037	
7	0.036	0.036	0.043	0.043	
8	0.036	0.036	0.043	0.043	
9	0.042	0.042	0.049	0.049	
10	0.052	0.052	0.061	0.061	
12	0.062	0.062	0.074	0.074	
14	0.073	0.073	0.086	0.086	
16	0.083	0.083	0.098	0.098	
18.	0.094	0.094	0.110	0.110	
19	0.099	0.099	0.116	0.116	
20	0.104	0.104	0.123	0.123	
24	0.125	0.125	0.147	0.147	
27	0.140	0.140	0.165	0.165	
30	0.156	0.156	0.184	0.184	
37	0.192	0.192	0.227	0.227	
44	0.229	0.229	0.270	0.270	
52	0.270	0.270	0.319	0.319	
61	0.317	0.317	0.374	0.374	

Effective from: 1st November 217

TABLE XL3

VARIATION FACTOR FOR XLPE(XLFAL/XLFCU)

SINGLE CORE ARMOURED /UNARMOURED XLPE INSULATED 3.3 to 33 KV POWER CABLES WITH CU / AL CONDUCTOR

Nominal Cross Sectional Area	XLPE Factor for Armoured/ Unarmoured Cable with AL/CU Conductor									
(in Sq. mm.)	3.3 KV	6.6 KV (E)	11 KV (E)/ 6.6 KV (UE)	11 KV (UE)	22 KV (E)	33 KV (E)				
25	0.110	0.131	0.170	0.279						
35	0.122	0.137	0.175	0.284	0.317	0.522				
50	0.135	0.151	0.191	0.307	0.341	0.563				
70	0.155	0.172	0.215	0.342	0.379	0.615				
95	0.174	0.193	0.241	0.377	0.417	0.670				
120	0.192	0.212	0.262 0.407	0.407	0.449	0.713				
150	0.209	0.229	0.283	0.437	0.481	0.757				
185	0.228	0.250	0.308	0.471	0.518	0.809				
240	0.255	0.279	0.343	0.519	0.569	0.883				
300	0.280	0.322	0.372	0.560	0.613	0.943				
400	0.326	0.392	0.420	0.625	0.683	1.041				
500	0.388	0.461	0.469	0.694	0.757	1.142				
630	0.467	0.520	0.529	0.777	0.845	1.265				
800	0.567	0.593	0.602	0.874	0.949	1.407				
1000	0.656	0.665	0.660	0.955	1.036	1.525				

Note: XLPE factors include Semicons for Conductor & Insulation screen

TABLE – XL4 VARIATION FACTOR FOR XLPE (CCF1AL / CCF1Cu)

3 CORE XLPE INSULATED 3.3 to 33 KV POWER CABLES WITH COPPER / ALUMINIUM CONDUCTOR

		·				
Nominal Cross	3.3 KV	6.6 KV (E)	6.6 KV (UE) /	11 KV (UE)	22 KV (E)	33 KV (E)
Sectional Area	ARM	ARM	11 KV (E)	ARM	MRA	ARM
(in Sq. mm)			ARM	ľ		
25	0.315	0.394	0.511	0.838		
35	0.339	0.427	0.545	0.880	0.982	1.638
50	0.378	0.474	0.600	0.957	1.065	1.751
70	70 0.435 0.541		0.679 1.067		1.183	1.916
95	95 0.489 0.604		0.755 1.171		1.295	2.071
120	0.537	0.661	0.822 1.265		1,396	2.210
150	0.585	0.719	0.890	0.890 1.359		2.350
185	0.642	0.784	0.968	1.468	1.614	2.513
240	0.717	0.873	1.074	1.615	1.773	2.732
300	0.781	1.006	1.167	1.744	1.928	2.919
400	0.886	1.227	1.314	1.948	2.130	3.229
500	0.956	1.421	1.445	2.148	2.381	3.538
630	1.129	1.582	1.609	2.382	2.630	: 3.940

Note: XLPE factors include Semicons for Conductor & Insulation screen

Effective from: 1st November 217

TABLE H1

VARIATION FACTOR FOR ALUMINIUM (AIF)
ALUMINIUM ARMOURED SINGLE CORE XLPE INSULATED 3.3 TO 33 KV CABLES

Nominal Cross	Aluminium Factor for Aluminium Armoured Cable with Aluminium Conductor									
Sectional Area (in Sq. mm.)	3.3 KV	6.6 KV (E)	11 KV (E)/ 6.6 KV (UE)	11 KV (ÜE)	22 KV (E)	33 KV (E)				
35	0.251	0.284	0.301	0.344	0.358	0.473				
50	0.312	0,336	0.352	0.397	0.408	0,672				
70	0.385	0.409	0.423	0.469	0.501	0.723				
95	0.476	0.500	0.518	0.637	0.656	0.856				
120	0.561	0.586	0.601	0.726	0.744	0,949				
150	0.653	0.678	0.696	0.823	0.842	1.050				
185	0.773	0.797	0.893	0.949	0.965	1.183				
240	0.997	1.063	1.083	1.139	1.154	1.387				
300	1.209	1.271	1.283	1.333	1.307	1.753				
400	1.438	1.556	1.565	1.620	1.636	2.046				
500	1.873	1.901	1,910	2.110	2.128	2,484				
630	2.337	2.361	2.369	2.580	2.595	2.978				
800	800 3.007 3.071		3.080	3.145	3.163	3.588				
1000	3.737	3.741	3.749	3.804	3.822	4.565				

TABLE HZ VARIATION FACTOR FOR POLYMER (CCFAI / CCFCu) 3 CORE XLPE INSULATED 3.3 to 33 KV POWER CABLES WITH COPPER / ALUMINIUM CONDUCTOR

Nominal Cross Sectional Area (in Sq. mm)	3.3 KV 6.6 KV (E) ARM ARM		6.6 KV (UE) / 11 KV (E) ARM	11 KV (UE) ARM	22 KV (E) ARM	33 KV (E) ARM	
35	0.374	0.990	1.142	1.604	1.782		
50	0.445	1.119	1.260	1.834	2.046	2.864	
70	0.547	1.290	1.396	2.011	2.284	3.219	
95	0.594	1,440	1.647	2.269	2.428	3.367	
120	0.732	1.692	1.877	2.498	2.715	3.646	
1.50	0.812	1.906	2.061	2.767	2.931	3.927	
185	0.960	2.086	2.406	3.028	3.180	4.166	
240	1.130	2.484	2.744	3.398	3.530	4.589	
300	1.219	2.912	3.161	3.840	4.016	5.029	
400	1.313	3.530	3.664	4.353	4.666	5.736	
500	1.652	3.925	3.971	4.621	4.878	5.913	
630	1.949	4.487	4.982	5.225	5.477	6,696	

Fillers added in PVC consumption

Effective from: 1st November 217

TABLE H3 VARIATION FACTOR FOR STEEL (FeF)

XLPE INSULATED 3.3 TO 33 KV POWER CABLES WITH COPPER / ALUMINIUM CONDUCTOR

Nominal Cross Sectional Area Sq. mm.	3.3 KV	6.6 KV (E)	11 KV (E) / 6.6 KV (UE)	11 KV (UE)	22 KV (E)	33 KV (E)
25	0.551	0.604	0.656	0.814		
3.5	0.645	0.645	0.731	0.879	0.937	-
50	0.675	0.703	0.761	0.937	0.966	1.181
70	0.761	0.761	0.849	0.996	1.055	1.289
95	0.820	0.849	0.907	1.083	1.113	1.348
120	0.879	0.907	0.966	1.142	1.172	1.406
150	0.966	0.966	1.055	1.201	1.259	1,494
185	1.025	1.055	1.113	1.259	1.318	1.553
240	1.142	1.142	1.231	1.377	1.406	1.641
300	1.231	1.259	1.318	1.465	1.524	1.758
400	1.348	1.406	1.435	1.582	1.641	1.876

Effective from: 1st November 217

TABLE H4

VARIATION FACTOR FOR ALUMINIUM (AIF)

XLPE INSULATED SINGLE CORE 3.3 TO 33 KV POWER CABLES WITH COPPER CONDUCTOR

Nominal Cross Sectional Area	Aluminium Factor for Aluminium Armoured Cable with Copper Conductor									
(in Sq. mm.)	3.3 KV	6.6 KV (E)	11 KV (E)/ 6.6 KV (UE)	11 KV (UE)	22 KV (E)	33 KV (E)				
35	0.153	0.187	0.204	0.247	0.258	0.372				
50	0.179	0.203	0.220	0.262	0.275	0.425				
70	0.196	0.219	0.233	0.278	0.311	0.444				
95	0.213	0.237	0.254	0.373	0.392	0.470				
120	0.228	0.253	0.268	0.393	0.410	0.488				
150	0.243	0.269	0.287	0.414	0.432	0.504				
185	0.261	0.285	0,381	0.437	0.455	0.526				
240	0.324	0.389	0.410	0.465	0.480	0.556				
300	0.365	0.428	0.440	0.490	0.510	0.737				
400	0.432	0.471	0.480	0.536	0.552	0.783				
500	0.489	0.517	0.526	0.726	0.744	0.844				
630	0.544	0.568	0.572	0.787	0.801	0.902				
800	0.706	0.787	0.797	0.862	0.880	0.982				
1000	0.824	0.865	0.867	0.923	0.940	1.324				

TABLE - H5

VARIATION FACTOR FOR STEEL (FeW)

XLPE INSULATED 3.3KV TO 33 KV POWER CABLES WITH COPPER / ALUMINIUM CONDUCTOR

Nominal Cross Sectional Area in Sq. mm	3.3/3.3 KV	3.3/6.6 KV	11 KV (E) / 6.6 KV (UE)	11 KV (UE)	22 KV (E)	33 KV (E)	
25	1.258	1.457	1.612	2.509	1.503	i	
35	1.361	1.569	1.853	2.644	2.797	2.517	
50	1.682	1.687	2.321	2.800 •	2.921	4,569	
70	2.033	1.979	2.503	3.219	3.347	4.809	
95	2.202	2.507	2.718	4.019	4.200	5.437	
120	2.371	2.675	2.882	4.241	4.416	6.713	
150	2.870	2.847	3.265	4.447	4.621	6.976	
185	3.121	3.309	4.148	4.726	5.289	7.356	
240	3.758	4.227	4.442	5.442	6.651	7.718	
300	4.099	5.024	5.182	6.894	7.084	8.187	
400	5.750	6.572	6.658	7.433	7.657	8.760	
500	6.716	6.777	6.861	7.588	7.797	8.830	
630	7.492	7.465	7.477	8.209	8.386	9.413	

Letter head of Company (<Rs. 10 Cr value)

Ref	Date
То,	
Bharat Heavy Electricals Limited	
PEM, PPEI Building, Plot No 25,	
Sector -16A, Noida (U.P)-201301	
Subject: - Certification regarding local conte	nt
Reference: Tender Enquiry No	
Name of Package:	
Dear Sir,	
We hereby certify that items offered by us name)for(Project Name/Rate contract) minimum local content in line with Cl. No of NIT No deprocurement (Preference to Make in India), Order 2017 dated-15.06.20	ated and the Public
We further confirms that details of location at which the local value registered works at(address of	
	Yours very truly
(auth	orized signatory of company)
	(firm name)
	authorized signatory of company

An undertaking regarding Model Clauses (To be provided alongwith bid)

Reference:
Enquiry no: PE/PG/BHU/E-6783/2021, Dated 08.10.2021
Item: LT XLPE POWER CABLE
Project: ^{1 X} 660 MW BHUSAWAL TPP
TO WHOM SO IT MAY CONCERN
This is with reference to Ministry of Finance circular dated 23.07.20 reg. restriction under rule 144 (xi) of GFR.
"I have read the clause regarding restrictions on procurement from a bidder of a country which shares a land border with India. I hereby certify that M/sis not from such a country and is eligible to be considered against Enquiry no:"
Sign & Signature
Date: 08.10.2021

Place:

Note-Bidders to quote value in highlighted box only.

PACKAGE- LT XLPE POWER CABLE PROJECT-1 X 660 MW BHUSAWAL TPP

ENQUIRY NO.- PE/PG/BHU/E-6783/2021 Dtd. 08.10.2021

	Bidder's Name-	Dtu. 00.10.202	L									
S. No.	Item Description	HSN CODE	Drum Lengh	Quantity	Unit	Unit Ex- Works Price (Rs.)	Total Ex-Works Price (Rs.)	Freight % of Total Ex- works Price (in %)	Freight Charges (Rs.)	Rate of GST (%)	GST Amount ON Total Ex-works Price & Freight (Rs.)	Total FOR Site Price (Rs.)
(A)	1.1KV, Al conductor, XLPE insulated, Gal- Hard drawn Aluminium Round Wire Arm Extruded HRPVC compound conforming cables, OVERALL SHEATH: Extruded FRLS	oured conform to type ST2 of IS	ing to H4 grade 5: 5831 for mul	for single core of ticore cable & no	cables), INNER inner sheath	SHEATH: for single core						
A1	1C - 400- AL ARMOURED	85444920	500	11500	Mtr		0		0		0	0
A2	1C - 630- AL ARMOURED	85444920	500	34000	Mtr		0		0		0	0
А3	2C - 25- AL ARMOURED	85444920	500	3000	Mtr		0		0		0	0
A4	2C - 50- AL ARMOURED	85444920	500	2000	Mtr		0		0		0	0
A5	2C - 95- AL ARMOURED	85444920	500	5000	Mtr		0		0		0	0
A6	2C - 185- AL ARMOURED	85444920	500	10500	Mtr		0		0		0	0
A7	3C - 16- AL ARMOURED	85444920	500	43500	Mtr		0		0		0	0
A8	3C - 25- AL ARMOURED	85444920	500	22500	Mtr		0		0		0	0
А9	3C - 50- AL ARMOURED	85444920	500	13500	Mtr		0		0		0	0
A10	3C - 95- AL ARMOURED	85444920	500	8500	Mtr		0		0		0	0
A11	3C - 150- AL ARMOURED	85444920	500	4500	Mtr		0		0		0	0
A12	3C - 240- AL ARMOURED	85444920	500	10500	Mtr		0		0		0	0
A13	3C - 300- AL ARMOURED	85444920	500	1000	Mtr		0		0		0	0
A14	3.5C - 25- AL ARMOURED	85444920	500	12000	Mtr		0		0		0	0
A15	3.5C - 50- AL ARMOURED	85444920	500	15500	Mtr		0		0		0	0
A16	3.5C - 95- AL ARMOURED	85444920	500	4000	Mtr		0		0		0	0
A17	3.5C - 185- AL ARMOURED	85444920	500	1000	Mtr		0		0		0	0
A18	3.5C - 300- AL ARMOURED	85444920	500	1500	Mtr		0		0		0	0
A19	4C - 16- AL ARMOURED	85444920	500	3500	Mtr		0		0		0	0
(B)	1.1KV, Cu conductor, XLPE insulated, Galvanised Steel Round Wire Armoured for multi-core cables (Non Magnetic Hard drawn Aluminium Round Wire Armoured conforming to H4 grade for single core cables), INNER SHEATH: Extruded HRPVC compound conforming to type ST2 of IS: 5831 for multicore cable & no inner sheath for single core cables, OVERALL SHEATH: Extruded FRLSH HRPVC compound conforming to type ST2 of IS: 5831 & black in colour.											
B1	2C - 2.5- CU ARMOURED	85444920	1000	78000	Mtr		0		0		0	0
B2	3C - 2.5- CU ARMOURED	85444920	1000	149000	Mtr		0		0		0	0
(C)	GRAND TOTAL (RS.)(A+B)						0		0		0	0
						1	1		1			

NOTES:

Price Bid Format

Note-Bidders to quote value in highlighted box only.

PACKAGE- LT XLPE POWER CABLE PROJECT-1 X 660 MW BHUSAWAL TPP ENQUIRY NO.- PE/PG/BHU/E-6783/2021 Dtd. 08.10.2021

	Bidder's Name-											
S. No.	Item Description	HSN CODE	Drum Lengh	Quantity	Unit	Unit Ex-	Total Ex-Works Price	Freight % of	Freight Charges (Rs.)	Rate of GST	GST Amount ON	Total FOR Site Price (Rs.)
						Works Price	(Rs.)	Total Ex-		(%)	Total Ex-works Price	
						(Rs.)		works Price			& Freight (Rs.)	
								(in %)				
L		1	1		1				1		Į.	1

- 1) The standard drum length shall be 500/1000 meters as indicated above. Tolerance on individual drum length shall be ±5%.
- 2) Overall tolerance on total dispatched quantity of each size shall be (-) 2% and (+) 0% except where the total ordered quantity is one single drum length of 500/1000m, in which case it shall be -5% to 0%. Cables consumed for testing and inspection shall be to bidder's account.
- 3) For each individual cable size, one short length of not less than 200m may be accepted only in the final drum length to complete the supply (except where the total ordered quantity is one single drum length of 500/1000m). The overall tolerance limits stipulated above shall continue to apply (in case short lengths are accepted).
- 4) In case of the quantities cleared by BHEL for manufacturing are manufactured and offered for inspection by successful bidder in more than one batch, BHEL reserves the right to witness type testing on all batches without any price implications.
- 5) Unit price of cables quoted by bidder shall be inclusive of type test charges. No separate charges shall be payable for type tests.
- 6) For requirement of FRLS inner sheath, additional price implication over basic unit price shall be as per Annexure-1 A to 'BOQ-cum Price Schedule
- 7) For any clarification please refer technical specification no.PE-TS-415-507-E002.(Rev-0)

Annexure-1A to BOQ Cum Price Schedule

Sl. No.	Description	%age Implication of Basic Price	
1	Inner sheath FRLS in place of Non-FRLS.	(+)2.5 %	

Maharashtra State Power Generation Company Limited					
Bhusawal Project (1x660MW) Proforma of Vendor Approval					
1	Name of System /Package/Item:				
2	Name of agency on whom order for the main work is placed				
3	Approval for (Name of construction material)				
4	Name of the vendors specified in contract document for this material				
5	Name of the proposed Sub Contractor(Vendor)				
6	Reasons for asking new vendor				
7	Details of supporting documents in lieu of above reasons				
8	Specific requirement of material in terms of dia, size, quantity etc.				
9	When the material is required & for which structure				
10	Whether vendor is Partnership/ Pvt./Public Ltd. Company				
11	Particular of registration with Government i) GST registration No. ii) Company registration No. & Incorporation Certificate iii) PF & ESIC Certificate.				
12	iv) Pan No.				
13	Address of vendor's factory Contact No. of vendor's representative for additional information				
14	Production Business Area				
16	Average annual turnover for last three years as per CA's Certificate				
17	Name of Companies where the vendor is registered				
18	Details of orders completed last 3 years (Quantity & amount)				
19	Details of orders in hand (Quantity & amount)				
20	Maximum value & quantity of work executed during last 3 years				
21	Name of the reputed, well known clients to whom the vendor has supplied the material				
22	End users Performance Certificate (Name & documents) along with the relevant PO.				
23	Any additional information				
24	Recommendation				

M/s BHEL Sub-Contractor