

पावर सेक्टर- पश्चिमी क्षेत्र Power Sector-Western Region
 श्रीमोहनी काम्पलेक्स, 345 किंग्सवे, नागपूर Shreemohini complex, 345 Kingsway Nagpur - 440 001
 फोन / Phone 0712- 2858600, फैक्स FAX: 0712-2858699 www.bhelpswr.co.in

BHEL PAN: AAACB4146P

Ref: BHE/PW/PUR/WNT-DM PLANT PGTEST-U8/2402/Corg-02/Clarifications Dt: 07/04/2021
 -----Page 1 of 4-----

To,

ALL BIDDERS,

Sub: Corrigendum-02: Clarifications

Job: Resolution of pending technical issues and Expert/ Consulting services for DM Plant PG test at Wanakbori Extn Unit-08 Set-01 at GSECL 1X800MW project.

E- TENDER SPECIFICATION NUMBER: BHE/PW/PUR/WNT-DM PLANT PGTEST-U8/2402

Bidders to kindly take note of the following:

AA) Amendments

SI no.	Existing Clause of VOLIA TCC	Remarks	Amendment / To be replaced as
1	Annexure 2 PROCESS DESIGN & SIZING CALCULATIONS , RESIN DS, VESSEL THK etc	Stands deleted/replaced	Revised Annexure 2 PE-V0-408-163-A003 (PROCESS SIZING CALCULATION)-REV-5 (CUST APPROVED). <i>Provided along with this Corrigendum 02</i>
2	Annexure 1 P&I DIAGRAM FOR DM PLANT REV 00:	Stands deleted/replaced	Revised Annexure 1 PE-V0-408-155-A001 P&I DIAGRAM FOR DM PLANT REV 04. <i>Provided along with this Corrigendum 02</i>

BB) Clarifications:

SI no.	Bidder's query	BHEL's Clarifications
1	Please Provide Present water analysis report.	Please refer enclosed Revised Annexure 2 [PE-V0-408-163-A003 (PROCESS SIZING CALCULATION)-REV-5 (CUST APPROVED)]. Refer page number 5 of 72. And RESIN report dt. 11.02.2020 as provided as Annexure 3 RESIN REPORT DM Plant S-15 to S-16 BHEL- Wanakbori in VOLIA TCC.
2	Please Provide Regeneration Chemicals Details and quantity.	Please refer enclosed Revised Annexure 2 [PE-V0-408-163-A003 (PROCESS SIZING CALCULATION)-REV-5 (CUST APPROVED)]. All the information is available in process sizing calculation document

पावर सेक्टर- पश्चिमी क्षेत्र Power Sector-Western Region
 श्रीमोहनी काम्पलेक्स, 345 किंग्सवे, नागपूर Shreemohini complex, 345 Kingsway Nagpur - 440 001
 फोन / Phone 0712- 2858600, फैक्स FAX: 0712-2858699 www.bhelpswr.co.in

BHEL PAN: AAACB4146P

Ref: BHE/PW/PUR/WNT-DM PLANT PGTEST-U8/2402/Corg-02/Clarifications Dt: 07/04/2021
 Page 2 of 4

3	Please Provide Regeneration Time.	Please refer enclosed Revised Annexure 2 [PE-V0-408-163-A003 (PROCESS SIZING CALCULATION)-REV-5 (CUST APPROVED)]. All the information is available in process sizing calculation document
4	Please Provide: Pre Treatment chemical details and dosage	Please refer enclosed Revised Annexure 2 [PE-V0-408-163-A003 (PROCESS SIZING CALCULATION)-REV-5 (CUST APPROVED)]. Refer page number 5 of 72. It is clarified water analysis.
5	Please Provide: Individual unit output between regeneration details (OBR).	Please refer enclosed Revised Annexure 2 [PE-V0-408-163-A003 (PROCESS SIZING CALCULATION)-REV-5 (CUST APPROVED)]. All the information is available in process sizing calculation document.
NOTE: Bidder to visit site and collect any further information.		

=====

All other Terms and conditions of the Tender Specification shall remain unaltered unless expressly amended by BHEL in writing. Bidders are requested to submit as a part of their offer, a copy of this corrigendum duly Digitally countersigned by the authorized signatory as a token of Bidder's unqualified acceptance of this corrigendum.

This letter is hosted as file titled "Corrigendum02Clarifications" against NIT-2402 on **BHEL GeP NIC Portal** i.e. <https://eprocurebhel.co.in>

BIDDERS MAY PLEASE NOTE THAT SUBJECT TENDER IS E-TENDER AND THE OFFER IS TO BE SUBMITTED ONLY IN **BHEL GeP NIC Portal** i.e. <https://eprocurebhel.co.in>

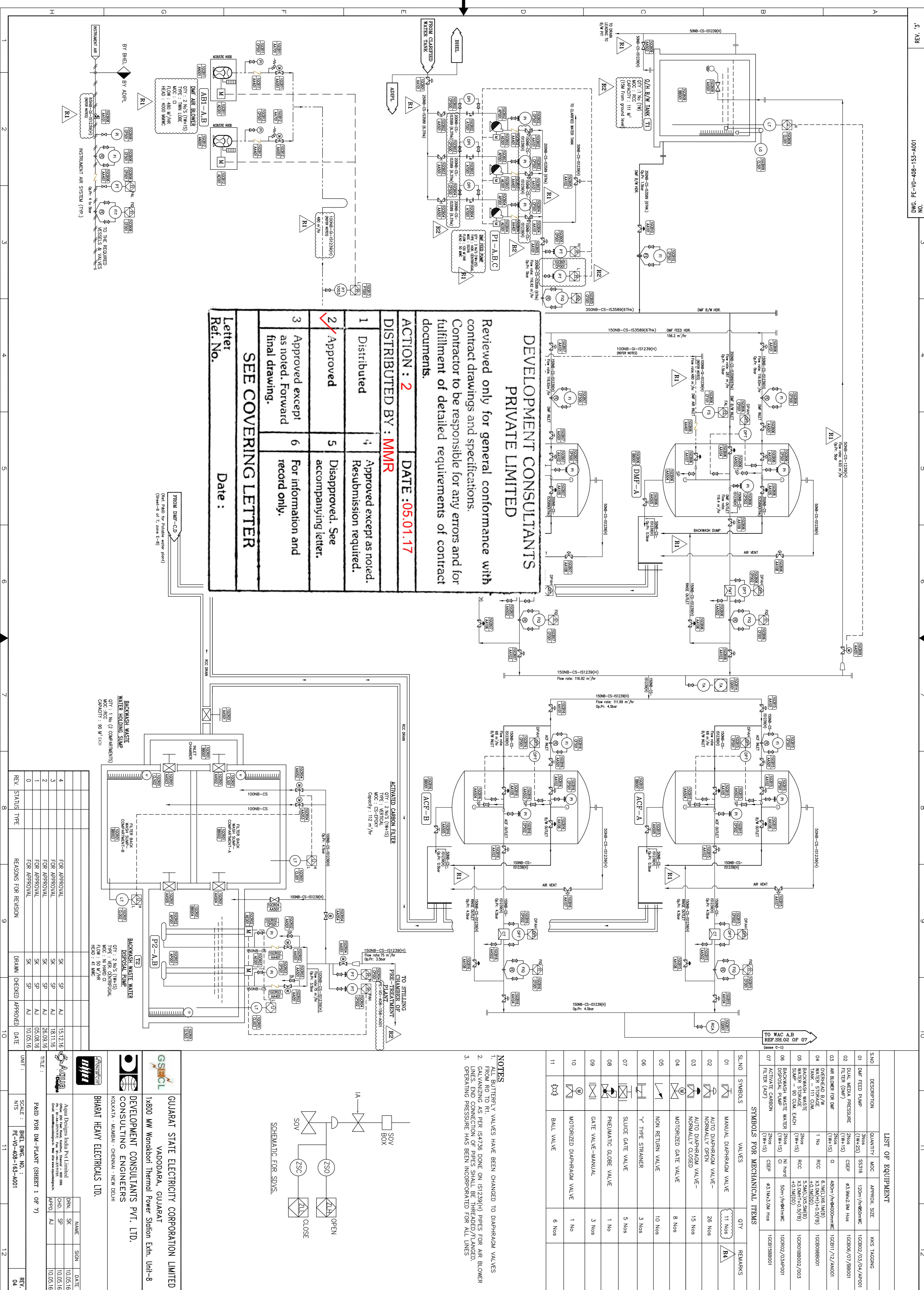
BIDDERS WHO HAVE ALREADY SUBMITTED THEIR OFFERS PRIOR TO ISSUANCE OF THIS CORRIGENDUM IN E-TENDER PORTAL ARE REQUIRED TO RE-SUBMIT THEIR OFFER AFTER TAKING COGNIZANCE OF THIS CORRIGENDUM.

Enclosures:

1. Revised Annexure 1 PE-V0-408-155-A001 P&I DIAGRAM FOR DM PLANT REV 04.
2. Revised Annexure 2 [PE-V0-408-163-A003 (PROCESS SIZING CALCULATION)-REV-5 (CUST APPROVED)]

Thanking you,
 Yours faithfully,

AGM (Purchase)

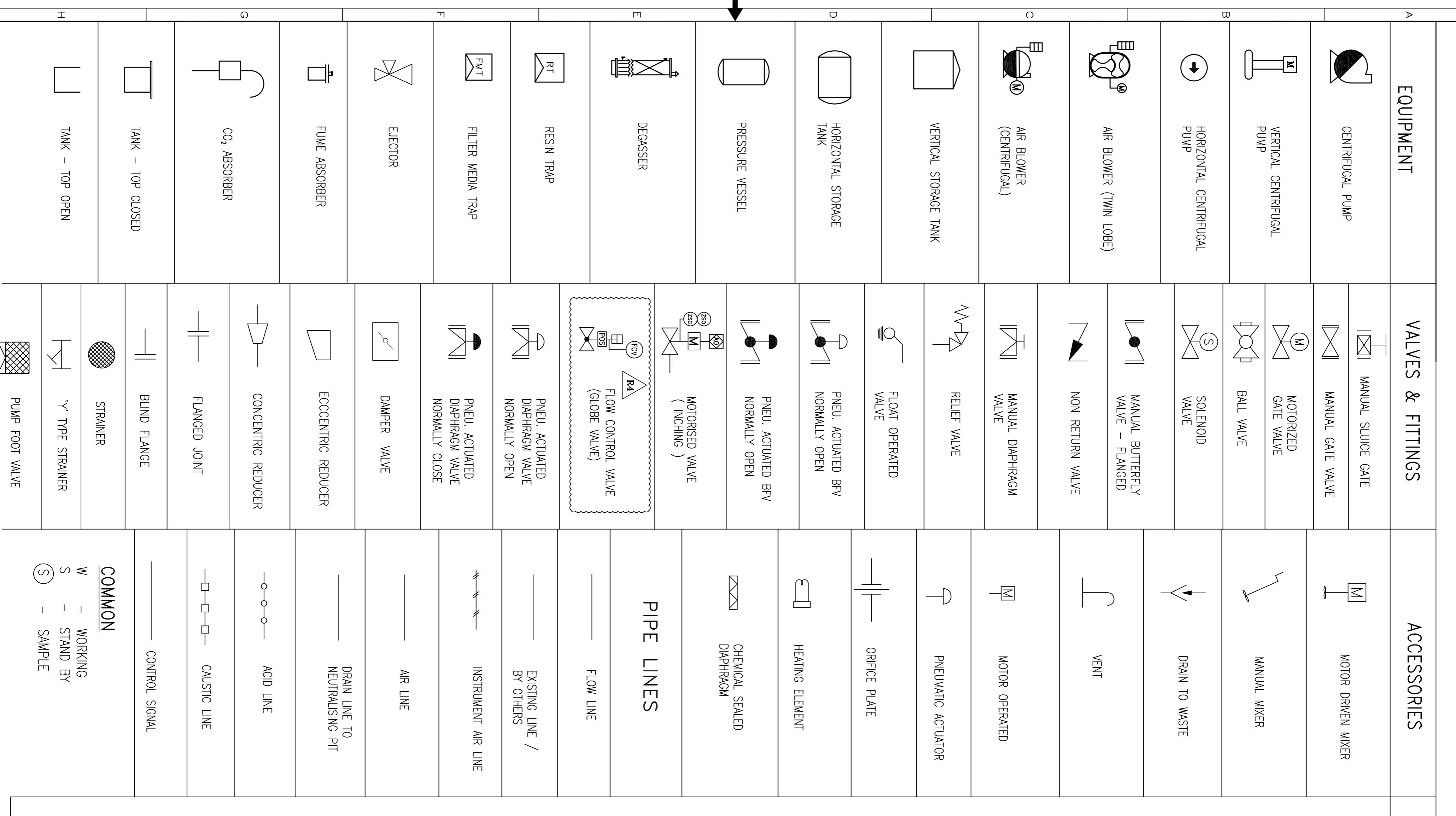

BHEL PAN: AAACB4146P

पावर सेक्टर- पश्चिमी क्षेत्र Power Sector-Western Region
श्रीमोहनी काम्पलेक्स, 345 किंग्सवे, नागपूर Shreemohini complex, 345 Kingsway Nagpur - 440 001
फोन / Phone 0712- 2858600, फैक्स FAX: 0712-2858699 www.bhelpswr.co.in

Ref: BHE/PW/PUR/WNT-DM PLANT PGTEST-U8/2402/Corg-02/Clarifications Dt: 07/04/2021
-----Page 3 of 4-----

Revised Annexure 1

PE-V0-408-155-A001 P&I DIAGRAM FOR DM PLANT REV 04



MATERIAL OF CONSTRUCTION FOR PIPING

S.NO SERVICE MATERIAL

01	CLARIFIED WATER, FILTERED WATER, SERVICE WATER, BACK WASH WASTE WATER, NON CORROSIVE WASTE WATER	CARBON STEEL PIPE TO IS1239 PART-(H) GRADE FOR SIZES UP TO 150NB & IS3589 FOR SIZES 200NB & ABOVE
02	HYDROCHLORIC ACID (AT ALL CONCENTRATION)	RUBBER LINED PIPE, CARBON STEEL PIPE TO IS1239 PART-(H) GRADE FOR SIZES ABOVE 50NB. FOR SIZES 50NB & BELOW IT CPC SCH 60
03	DE-CATIONISED WATER, DECASSED WATER & DE-MINERALISED WATER	RUBBER LINED PIPE, CARBON STEEL PIPE TO IS1239 PART-(H) GRADE FOR SIZES UP TO 150NB & IS3589 FOR SIZES 200NB & ABOVE
04	SODIUM HYDROXIDE (AT ALL CONCENTRATION)	RUBBER LINED PIPE, CARBON STEEL PIPE TO IS1239 PART-(H) GRADE FOR SIZES ABOVE 50NB. FOR SIZES 50NB & BELOW IT SS304 SCH 10
05	NEUTRALIZED EFFLUENT	RUBBER LINED PIPE, CARBON STEEL PIPE TO IS1239 PART-(H) GRADE.
06	POTABLE WATER, SERVICE AIR, INSTRUMENT AIR	GAZANIZING AS PER IS4736 DONE ON CARBON STEEL PIPE TO IS1239(H) GRADE.

NOTE :- 1. FOR DEMINERALISED WATER, STAINLESS STEEL SHALL BE USED FOR SIZES OF 50MM NB AND BELOW.

NOTE :- 2. FOR SMALL DIAMETER PIPE (<50NB), WHERE RUBBER Lining IS DIFFICULT, CPC PN 16 SHALL BE USED FOR HOLLOW CORED PIPE.

AND STAINLESS STEEL PIPE INSTEAD OF RUBBER LINED STEEL PIPE SHALL BE USED FOR OTHER SERVICES.

NOTES

- ALL VALVES IN THE INLET, OUTLET, BACKWASH, REGENERATION AND RINSE USED FOR EACH FILTER, ION EXCHANGE UNITS WILL BE PNEUMATICALLY OPERATED.
- ALL THE LINES ARE INDICATED WITH DESIGN PRESSURE IN REV-01

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

AA

BB

CC

DD

EE

FF

GG

HH

II

JJ

KK

LL

MM

NN

OO

PP

QQ

RR

SS

TT

UU

VV

WW

XX

YY

ZZ

AA

BB

CC

DD

EE

FF

GG

HH

II

JJ

KK

LL

MM

NN

OO

PP

QQ

RR

SS

TT

UU

VV

WW

XX

YY

ZZ

AA

BB

CC

DD

EE

FF

GG

HH

II

JJ

KK

LL

MM

NN

OO

PP

QQ

RR

SS

TT

UU

VV

WW

XX

YY

ZZ

AA

BB

CC

DD

EE

FF

GG

HH

II

JJ

KK

LL

MM

NN

OO

PP

QQ

RR

SS

TT

UU

VV

WW

XX

YY

ZZ

AA

BB

CC

पावर सेक्टर- पश्चिमी क्षेत्र Power Sector-Western Region
श्रीमोहनी काम्पलेक्स, 345 किंग्सवे, नागपूर Shreemohini complex, 345 Kingsway Nagpur - 440 001
फोन / Phone 0712- 2858600, फैक्स FAX: 0712-2858699 www.bhelpswr.co.in
BHEL PAN: AAACB4146P

Ref: BHE/PW/PUR/WNT-DM PLANT PGTEST-U8/2402/Corg-02/Clarifications Dt: 07/04/2021
-----Page 4 of 4-----

Revised Annexure 2

[PE-V0-408-163-A003 (PROCESS SIZING CALCULATION)-REV-5 (CUST APPROVED)]

CLIENT :BHARAT HEAVY ELECTRICALS LIMITED
END CLIENT: GUJARAT STATE ELECTRICITY CORPORATION LTD
1 X 800 MW WANAKBORI SUPER CRITICAL THERMAL POWER
PROJECT
CONSULTANT: DEVELOPMENT CONSULTANTS PVT.LTD
DM PLANT ALONGWITH POTABLE WATER TREATMENT PLANT

CLIENT

GUJARAT STATE ELECTRICITY CORPORATION LTD

PROCESS DESIGN & SIZING CALCULATIONS , RESIN DATASHEETS, VESSEL AND TANK THICKNESS& PRESSURE DROP CALCULATIONS FOR DM PLANT - 2 X 105 m³/hr

AND

WATER SYSTEM - 2 x15 M³/HR

DEVELOPMENT CONSULTANTS
PRIVATE LIMITED

Reviewed only for general conformance with
contract drawings and specifications.
Contractor to be responsible for any errors and for
fulfillment of detailed requirements of contract
documents.

ACTION : 2	DATE :24.11.16
DISTRIBUTED BY : TKD/AD/JRC/BD	
1	Distributed
2	Approved
3	Approved except as noted. Forward final drawing.
SEE COVERING LETTER	
Letter Ref. No.	Date :

**PREPARED BY
CONTRACTOR**

**DM PLANT ALONG WITH POTABLE
WATER TREATMENT PLANT**

REVISION:5

**BASIC ENGINEERING PACKAGE
DOC NO: PE-V0-408-163-A003**

CLIENT :BHARAT HEAVY ELECTRICALS LIMITED
END CLIENT: GUJARAT STATE ELECTRICITY CORPORATION LTD
1 X 800 MW WANAKBORI SUPER CRITICAL THERMAL POWER
PROJECT
CONSULTANT: DEVELOPMENT CONSULTANTS PVT.LTD
DM PLANT ALONGWITH POTABLE WATER TREATMENT PLANT

TITLE	BASIC ENGINEERING PACKAGE
OWNER	BHEL -WANAKBORI
CONTRACTOR	M/S. AQUA DESIGNS INDIA PVT LTD
PLANT	DM PLANT ALONGWITH POTABLE WATER TREATMENT PLANT
ADIPL JOB NO	PLA 15001
DOC NO	PE-V0-408-163-A003

REVISION STATUS					
5	Approval	VB	PK	AJ	14.11.2016
4	Approval	VB	PK	AJ	18.10.2016
3	Approval	VB	PK	AJ	07.09.2016
2	Approval	VB	PK	AJ	09.08.2016
1	Approval	VB	PK	AJ	22.07.2016
0	Approval	VB	PK	AJ	10.05.2016
Rev. No	Issued For	Prepared By	Checked By	Approved by	Date

**DM PLANT ALONG WITH POTABLE
WATER TREATMENT PLANT**

REVISION:5

**BASIC ENGINEERING PACKAGE
DOC NO: PE-V0-408-163-A003**

CLIENT :BHARAT HEAVY ELECTRICALS LIMITED
END CLIENT: GUJARAT STATE ELECTRICITY CORPORATION LTD
1 X 800 MW WANAKBORI SUPER CRITICAL THERMAL POWER
PROJECT
CONSULTANT: DEVELOPMENT CONSULTANTS PVT.LTD
DM PLANT ALONGWITH POTABLE WATER TREATMENT PLANT

INDEX

- 1. PROJECT INTRODUCTION*
- 2. PROCESS DESIGN BASIS*
- 3. PROCESS DESCRIPTION*
- 4. LIST OF EQUIPMENTS*
- 5. MASS BALANCE*
- 6. PROCESS DESIGN & SIZING CALCUALTION*
- 7. RESIN DATASHEETS*
- 8. PRESSURE DROP CALCULATION*
- 9. BATTERY LIMITS*
- 10. ANNEXURE - 1*
- 11. ANNEXURE – 2*

**DM PLANT ALONG WITH POTABLE
WATER TREATMENT PLANT**

REVISION:5

BASIC ENGINEERING PACKAGE
DOC NO: PE-V0-408-163-A003

CLIENT :BHARAT HEAVY ELECTRICALS LIMITED
END CLIENT: GUJARAT STATE ELECTRICITY CORPORATION LTD
1 X 800 MW WANAKBORI SUPER CRITICAL THERMAL POWER
PROJECT
CONSULTANT: DEVELOPMENT CONSULTANTS PVT.LTD
DM PLANT ALONGWITH POTABLE WATER TREATMENT PLANT

Chapter **1**

PROJECT INTRODUCTION

PROJECT DETAILS

- a) END CLIENT – M/S. GUJARAT STATE ELECTRICITY CORPORATION LTD
- b) CLIENT - M/S. BHARAT HEAVY ELECTRICALS LIMITED
- c) CONTRACTOR – AQUADESIGNS INDIA PRIVATE LIMITED

The Scope of Work Includes Design, Engineering, Manufacture, fabrication, assembly, inspection & testing at Vendor's & Sub Vendor's works, painting, forwarding, supply and delivery at site including start up and commissioning spares, mandatory spares, properly packed for transportation, unloading/handling and storage at site, in site transportation, assembly, erection & Commissioning, trail run, preparation & Submission of " As built" drawings, site testing, carrying out performance guarantee tests at site and handover of DM Plant along with Potable Water Treatment Plant.

**DM PLANT ALONG WITH POTABLE
WATER TREATMENT PLANT**

REVISION:5

**BASIC ENGINEERING PACKAGE
DOC NO: PE-V0-408-163-A003**

CLIENT :BHARAT HEAVY ELECTRICALS LIMITED
END CLIENT: GUJARAT STATE ELECTRICITY CORPORATION LTD
1 X 800 MW WANAKBORI SUPER CRITICAL THERMAL POWER
PROJECT
CONSULTANT: DEVELOPMENT CONSULTANTS PVT.LTD
DM PLANT ALONGWITH POTABLE WATER TREATMENT PLANT

Chapter **2**

PROCESS DESIGN BASIS

Water Source : Clarified Water from Pre Treatment Plant

Plant Capacity : 2 x105 m3/hr

INLET WATER CHARACTERISTICS:

S.NO	PARAMETER	UNIT	VALUE
1.	Ca as CaCO ₃	ppm	85
2.	Mg as CaCO ₃	ppm	94
3.	Sodium + Potassium as CaCO ₃	ppm	75
4.	Hydrogen (FMA) as CaCO ₃	ppm	NIL
5.	Iron in Solution	ppm	0.05
	Total Cations (Except iron) as CaCO₃	ppm	254
6.	Bicarbonate as CaCO ₃	ppm	160
7.	Carbonate as CaCO ₃	ppm	NIL
8.	Hydroxide as CaCO ₃	ppm	NIL
9.	Sulphate as CaCO ₃	ppm	20
10.	Chloride as CaCO ₃	ppm	52
11.	Nitrate as CaCO ₃	ppm	22
12.	Phosphate as CaCO ₃	ppm	NIL
13.	Fluoride as CaCO ₃	ppm	NIL
	Total Anions as CaCO₃	ppm	254
14.	Reactive Silica as SiO ₂	ppm	22
15.	Colloidal Silica	ppm	NIL
16.	Conductivity at 25 °C	µS/cm	440
17.	pH value at 25 °C		7.5-8
18.	Turbidity	NTU	Not to Exceed 15

**DM PLANT ALONG WITH POTABLE
WATER TREATMENT PLANT**

REVISION:5

**BASIC ENGINEERING PACKAGE
DOC NO: PE-V0-408-163-A003**

CLIENT :BHARAT HEAVY ELECTRICALS LIMITED
END CLIENT: GUJARAT STATE ELECTRICITY CORPORATION LTD
1 X 800 MW WANAKBORI SUPER CRITICAL THERMAL POWER
PROJECT
CONSULTANT: DEVELOPMENT CONSULTANTS PVT.LTD
DM PLANT ALONGWITH POTABLE WATER TREATMENT PLANT

TREATED WATER QUALITY:

S.NO	PARAMETER	UNIT	VALUE
At the outlet of MB			
1.	Total Electrolyte	ppm	0.1 (Max)
2.	Reactive SiO ₂	ppm	<0.01 ppm of SiO ₂
3.	Iron as Fe	ppm	Nil
4.	Free CO ₂	ppm	Nil
5.	Total hardness	ppm	Nil
6.	pH value at 25 °C		6.8-7.2
7.	Conductivity	µS/cm	<0.1 at 25 °C
At the outlet of SBA			
1.	SiO ₂	ppm	<0.1 ppm of SiO ₂
2.	Conductivity	µS/cm	<5 at 25 °C
At the outlet of Degasser Tower			
1.	CO ₂	ppm	<5 as CO ₂ (Rev-02)
At the outlet of SAC			
1.	Sodium	ppm as CaCO ₃	<1
2.	Hardness	ppm	Not Detectable
At the outlet of DMF			
1.	TSS	ppm	<1

**DM PLANT ALONG WITH POTABLE
WATER TREATMENT PLANT**

REVISION:5

**BASIC ENGINEERING PACKAGE
DOC NO: PE-V0-408-163-A003**

CLIENT :BHARAT HEAVY ELECTRICALS LIMITED
END CLIENT: GUJARAT STATE ELECTRICITY CORPORATION LTD
1 X 800 MW WANAKBORI SUPER CRITICAL THERMAL POWER
PROJECT
CONSULTANT: DEVELOPMENT CONSULTANTS PVT.LTD
DM PLANT ALONGWITH POTABLE WATER TREATMENT PLANT

Chapter **3**

PROCESS DESCRIPTION

The following are the major steps involved in the process.

Clarified water will be pumped from Clarified Water Reservoir (Located in pre-Treatment Plant Area) by 3 Nos (1W+2S) filter feed pumps to Dual media Filter

Dual Media Filter:

Clarified water will enter in to Dual Media Filters and Suspended Solids present in it will be removed.

Activated Carbon Filter:

Water from Dual media Filter enters the Activated Carbon Filter. Activated Carbon Filter will remove residual Chlorine present in the water.

Weak AcidCation Exchanger (WAC):

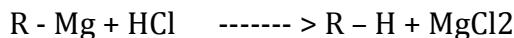
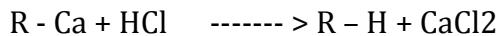
Filtered water from Activated Carbon Filter will enter in to the Weak Acid Cation Exchanger where Temporary hardness (HCO_3^-) will be removed.

Strong Acid Cation Exchanger (SAC):

Water from WAC is passed through the Strong Acid Cation Exchange unit for the removal of Cations. Cations Ca^{++} , Mg^{++} , Na^+ , Fe^{++} and K^+ present in water get exchanged with H^+ ions. The resin will be exchanged as per the following reactions:

DURING SERVICE CYCLE:

DM PLANT ALONG WITH POTABLE WATER TREATMENT PLANT
REVISION:5



BASIC ENGINEERING PACKAGE
DOC NO: PE-V0-408-163-A003

CLIENT :BHARAT HEAVY ELECTRICALS LIMITED
END CLIENT: GUJARAT STATE ELECTRICITY CORPORATION LTD
1 X 800 MW WANAKBORI SUPER CRITICAL THERMAL POWER
PROJECT
CONSULTANT: DEVELOPMENT CONSULTANTS PVT.LTD
DM PLANT ALONGWITH POTABLE WATER TREATMENT PLANT

DURING REGENERATION CYCLE:

Treated Water from SAC that contains acids of Chloride, Sulphates and Bicarbonate, etc.... This water is then led to Degasser Tower where it enters at the top.

On exhaustion, Strong Acid Cation Exchanger unit is regenerated in Counter Current Mode with HCl in thoroughfare regeneration with WAC unit.

DEGASSER SYSTEM:

The degasser tower (DGT) is a packed column packed with PP rings. Air is forced from the bottom of the tower by centrifugal blowers, while the water flows down through the bed of PP rings. The carbonic acid present in the water splits up in to carbon dioxide gas and water.

This carbon dioxide gas is stripped off and escapes from the top of the tower. The degassed water is collected in the degassed water tank and is pumped and fed to the Weak Base Anion Unit.

In this unit the following reaction takes place.

**DM PLANT ALONG WITH POTABLE
WATER TREATMENT PLANT**

REVISION:5

**BASIC ENGINEERING PACKAGE
DOC NO: PE-V0-408-163-A003**

CLIENT :BHARAT HEAVY ELECTRICALS LIMITED
END CLIENT: GUJARAT STATE ELECTRICITY CORPORATION LTD
1 X 800 MW WANAKBORI SUPER CRITICAL THERMAL POWER
PROJECT
CONSULTANT: DEVELOPMENT CONSULTANTS PVT.LTD
DM PLANT ALONGWITH POTABLE WATER TREATMENT PLANT

WEAK BASE ANION EXCHANGE UNIT:

Degassed water from Degassed Water Storage tank is pumped to the Weak Base Anion Exchanger. Weak base anion will remove the EMA from the feed water and the treated water will be passed to SBA, the main purpose of the WBA is to reduce the load in the SBA and chemical consumption of the DM plant and it will help in maintaining the specific and surface flow rate within the range to increase the working of plant efficiency

STRONG BASE ANION:

WBA water is passed through the Strong Base Anion Exchange unit for the removal of Anions. Anions Cl^- , SO_4^{2-} and SiO_2^{2-} present in water get exchanged with OH^- ions. The resin will be exchanged as per the following reactions:

DURING SERVICE CYCLE OF WBA & SBA:

DURING REGENERATION CYCLE OF WBA & SBA:

On exhaustion, Strong Base Anion Exchanger unit is regenerated in Counter Current Mode with NAOH in thoroughfare regeneration with WBA unit.

Hot Water tank with electrical heating arrangement is provided for heating the power water used for regeneration of SBA. This is to ensure the regeneration at elevated temperature for complete elution of silica from resin bed.

**DM PLANT ALONG WITH POTABLE
WATER TREATMENT PLANT**

REVISION:5

**BASIC ENGINEERING PACKAGE
DOC NO: PE-V0-408-163-A003**

CLIENT :BHARAT HEAVY ELECTRICALS LIMITED
END CLIENT: GUJARAT STATE ELECTRICITY CORPORATION LTD
1 X 800 MW WANAKBORI SUPER CRITICAL THERMAL POWER
PROJECT
CONSULTANT: DEVELOPMENT CONSULTANTS PVT.LTD
DM PLANT ALONGWITH POTABLE WATER TREATMENT PLANT

MIXED BED UNIT:

The slippage from Strong acid cation unit & Strong base anion Unit will be treated in Mixed Bed Unit which consists of mixture of Cation& Anion resins in the same vessel for fine polishing in order to achieve the required output water quality.

On exhaustion, mixed bed unit is regenerated using HCL and NaOH.

NEUTRALIZATION PIT

Neutralization pit shall be sized for holding the total regeneration effluent of DM plant for storage and neutralization of effluent.

**DM PLANT ALONG WITH POTABLE
WATER TREATMENT PLANT**

REVISION:5

**BASIC ENGINEERING PACKAGE
DOC NO: PE-V0-408-163-A003**

CLIENT :BHARAT HEAVY ELECTRICALS LIMITED
END CLIENT: GUJARAT STATE ELECTRICITY CORPORATION LTD
1 X 800 MW WANAKBORI SUPER CRITICAL THERMAL POWER
PROJECT
CONSULTANT: DEVELOPMENT CONSULTANTS PVT.LTD
DM PLANT ALONGWITH POTABLE WATER TREATMENT PLANT

Chapter

4

LIST OF EQUIPMENTS

SL.N O	LIST OF EQUIPMENTS	DESCRIPTION	QUANTIT Y	MOC
1.	DM Feed Pump	120 m3/hr @ 50 mWC	3(1W+2S)	SS316
2.	Dual Media Pressure Filter	3.9 m Dia X 2.9 m HOS	2(1W+1S)	CSEP
3.	Air Blowers for Dual Media Pressure Filter	480 m3/hr @ 4000 mmWC	2(1W+1S)	CI
4.	Overhead Backwash Water Storage Tank	7.3 m (L) X 5.4 m (B) X 3 m (Ht) + 0.5 m (FB) + 0.1 m Dead depth(Rev-05)	1 No	RCC
5.	Activated Carbon Filter	3.1 m Dia X 3.0 m HOS	2(1W+1S)	CSEP
6.	Weak Acid Cation Exchanger	1.9 m Dia X 2.1 m HOS(Rev-03)	2(1W+1S)	CSRL
7.	Strong Acid Cation Exchanger	1.9 m Dia X 2.4 m HOS(Rev-03)	2(1W+1S)	CSRL
8.	Degasser Tower	1.7 m Dia X 3.75 m Hos (Rev-02)	2(1W+1S)	CSRL
9.	Degasser Air Blower per stream	3150 m3/hr @ 100 mmWC(Rev-02)	2(1W+1S)	CI/CS
10.	Degassed Water Storage Tank	4.8 m (Dia) X 9 m (LOS)(Rev-03)	2 Nos	CSRL
11.	Degassed Water Transfer Pump per stream	120 m3/hr @ 45mWC (Rev-03)	2(1W+1S)	SS316
12.	Weak Base Anion Exchanger	1.9 m Dia X 2.1 m Hos(Rev-03)	2(1W+1S)	CSRL
13.	Strong Base Anion Exchanger	1.9 m Dia X 3.3 m Hos(Rev-03)	2(1W+1S)	CSRL
14.	Mixed Bed Exchanger	1.6 m Dia X 2.4 m Hos(Rev-03)	2(1W+1S)	CSRL
15.	Air Blower common for Mixed Bed	700 m3/hr @ 4000 mmWC(Rev-02)	2(1W+1S)	CI

**DM PLANT ALONG WITH POTABLE
WATER TREATMENT PLANT**

**BASIC ENGINEERING PACKAGE
DOC NO: PE-V0-408-163-A003**

REVISION:5

CLIENT :BHARAT HEAVY ELECTRICALS LIMITED
END CLIENT: GUJARAT STATE ELECTRICITY CORPORATION LTD
1 X 800 MW WANAKBORI SUPER CRITICAL THERMAL POWER
PROJECT
CONSULTANT: DEVELOPMENT CONSULTANTS PVT.LTD
DM PLANT ALONGWITH POTABLE WATER TREATMENT PLANT

	&Neutralization Pit			
16.	Regeneration Water Transfer Pump	20 m3/hr @ 30mWC(Rev-02)	2(1W+1S)	SS316
17.	Acid Unloading Pump	15 m3/hr @ 20 mWC	2(1W+1S)	PP
18.	Bulk Acid Storage Tank	3.2 m Dia X 6.3 m Los (Rev-03)	2 Nos	CSRL
19.	Acid Measuring Tank for SAC	1.3 m (Dia) X 1.27 m (Ht) + 0.3 m (FB) + 0.1 m Dead depth(Rev-02)	2 Nos	CSRL
20.	Acid Measuring Tank for MB	0.8 m (Dia) X 0.825 m (Ht) + 0.3 m (FB) + 0.1 m Dead depth(Rev-02)	1 No	CSRL
21.	Acid Measuring Tank for N-Pit	0.8 m (Dia) X 0.825 m (Ht) + 0.3 m (FB) + 0.1 m Dead depth(Rev-03)	1 No	CSRL
22.	Caustic Unloading Pump	15 m3/hr @ 20 mWC	2(1W+1S)	SS316
23.	Bulk Caustic Storage Tank	2.3 m Dia X 4.2 m Los(Rev-03)	2 Nos	CSRL
24.	Caustic Measuring Tank for SBA	1.1 m (Dia) X 1.3 m (Ht) + 0.3 m (FB)+ 0.1 m Dead depth(Rev-02)	2 Nos	CSRL
25.	Caustic Measuring tank for MB	0.8 m (Dia) X 0.825 m (Ht) + 0.3 m (FB) + 0.1 m Dead depth(Rev-02)	1 No	CSRL
26.	Caustic Measuring Tank for N-Pit	0.8 m (Dia) X 0.825 m (Ht) + 0.3 m (FB) + 0.1 m Dead depth(Rev-04)	1 No	CSRL
27.	Activated Carbon Filter for Alkali	1.0 m Dia X 2.7 m Hos	1 No	CSRL
28.	Alkali Brine Solution Preparation Tank	3 m (Dia) X 3.6 m (Ht) + 0.3 m (FB) + 0.1m Dead depth(Rev-02)	1 No	CSRL
29.	Dilution Water Heater for Alkali (Hot Water Tank)	2.2 m Dia X 2.6 m Hos(Rev-03)	1 No	SS316
30.	Heater	40 kW(Rev-03)	2 No	
31.	Neutralization Pit	8 m (L) X 8 m (B) X 2.5 m	1 No	RCC

DM PLANT ALONG WITH POTABLE WATER TREATMENT PLANT

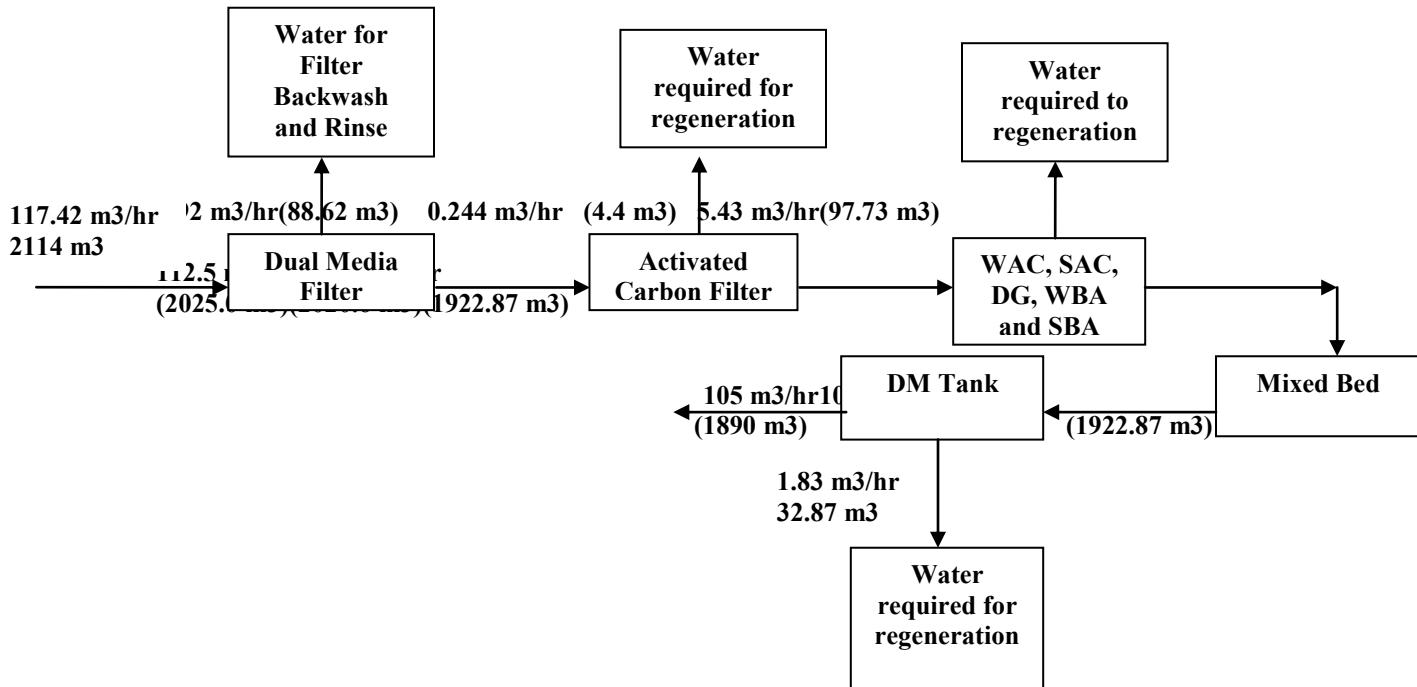
BASIC ENGINEERING PACKAGE
DOC NO: PE-V0-408-163-A003

REVISION:5

CLIENT :BHARAT HEAVY ELECTRICALS LIMITED
END CLIENT: GUJARAT STATE ELECTRICITY CORPORATION LTD
1 X 800 MW WANAKBORI SUPER CRITICAL THERMAL POWER
PROJECT
CONSULTANT: DEVELOPMENT CONSULTANTS PVT.LTD
DM PLANT ALONGWITH POTABLE WATER TREATMENT PLANT

		(Ht) + 0.5 m (FB)+0.1m Dead depth (each compartment) (Rev-03)	(In two compartments)	
32.	Neutralized Effluent Disposal Pumps for each compartment	40 m3/hr @ 31 mWC (Rev-03)	2(1W+1S)	SS316
33.	Filter Backwash Sump	7 m (L) X 7 m (B) X 3 m (Ht) + 0.5 m (FB)+ 0.1m Dead depth (each compartment) (Rev-03)	1No (In two compartments)	RCC
34.	Backwash Waste Water Disposal Pump	75 m3/hr @ 35mWC (Rev-04)	2(1W+1S)	Ni CI/SS316
35.	Dual Media Filter	1.4 m Dia X 2.7 m Hos	2(1W+1S)	CSEP
36.	Air Blower for Dual Media Filter	62 m3/hr @ 4000 mmWC (Rev-03)	2(1W+1S)	CI
37.	Sodium Hypochlorite Dosing tank	0.5 m (Dia) X 0.625 m (Ht) + 0.3 m (FB)+ 0.1 m Dead depth (Rev-02)	1 No	CSRL
38.	Sodium Hypochlorite Solution Dosing Pump	0-4 LPH	2(1W+1S)	CI
39.	Alkali Transfer Cum Recirculation Pump	10 m3/hr @ 20 mWC	2(1W+1S)	SS316

**DM PLANT ALONG WITH POTABLE
WATER TREATMENT PLANT**


REVISION:5

**BASIC ENGINEERING PACKAGE
DOC NO: PE-V0-408-163-A003**

Chapter 5

MASS BALANCE

Mass balance in m³and (m³/18 hr) basis(Rev-03)

Note:

The mass balance is prepared on 18 hr basis, however the filter backwash and rinse occurs only 24 hrs once, hence the waste generated during filter backwash is converted to 18 hr basis as follows

Volume of water required for DMF, potable DMF (only backwash) and ACF backwash and rinse = 118.51 m³
 Volume of water required for DMF, potable DMF (only backwash) and ACF backwash and rinse (18 hr basis)

$$= 118.51 * 18 / 24 \\ = 88.62 \text{ m}^3$$

**DM PLANT ALONG WITH POTABLE
WATER TREATMENT PLANT**

REVISION:5

**BASIC ENGINEERING PACKAGE
DOC NO: PE-V0-408-163-A003**

CLIENT :BHARAT HEAVY ELECTRICALS LIMITED
END CLIENT: GUJARAT STATE ELECTRICITY CORPORATION LTD
1 X 800 MW WANAKBORI SUPER CRITICAL THERMAL POWER
PROJECT
CONSULTANT: DEVELOPMENT CONSULTANTS PVT.LTD
DM PLANT ALONGWITH POTABLE WATER TREATMENT PLANT

Chapter 6

PROCESS DESIGN & SIZING CALCUALTION

DEMINERALISATION PLANT

DM FEED PUMPS

1.	Quantity	3 (1W + 2S)	Nos
2.	Capacity required (Please Refer mass balance)	117.42(Rev-03)	m3/hr
3.	Capacity provided	120	m3/hr
4.	Head	50(Rev-02) (please refer attached pressure drop calculation)	mWC
5.	Shut-off head (Rev-02)	55	mWC
6.	Efficiency at rated capacity (Rev-02)	65	%
7.	Type	Horizontal Centrifugal	
Material of Construction			
1.	Casing	SS-316	
2.	Impeller	SS-316	
3.	Rated Speed	1500	rpm

DUAL MEDIA PRESSURE FILTERS

1.	Quantity	2 (1W+1S)	Nos
2.	Type	Vertical Cylindrical with dished ends	
3.	Gross Flow rate required (Please refer mass balance)	117.42(Rev-03)	m3/hr
4.	Design Flow Rate	118(Rev-03)	m3/hr
5.	Net Flow rate at the outlet of MB	105	m3/hr

**DM PLANT ALONG WITH POTABLE
WATER TREATMENT PLANT**

REVISION:5

**BASIC ENGINEERING PACKAGE
DOC NO: PE-V0-408-163-A003**

CLIENT :BHARAT HEAVY ELECTRICALS LIMITED
END CLIENT: GUJARAT STATE ELECTRICITY CORPORATION LTD
1 X 800 MW WANAKBORI SUPER CRITICAL THERMAL POWER
PROJECT
CONSULTANT: DEVELOPMENT CONSULTANTS PVT.LTD
DM PLANT ALONGWITH POTABLE WATER TREATMENT PLANT

6.	Design Surface Flow rate	10	m3/m2/hr
7.	Area of Filter	11.8(Rev-03)	m2
8.	Diameter	3.88(Rev-03)	M
9.	Diameter provided	3.9	M
10.	Area of Filter provided	11.94	m2
11.	Type of Filter Media	Bed of Graded Sand and Anthracite Supported over Graded Gravel.	
12.	Bed Depth	Anthracite 350, sand 750	mm
13.	Supporting media - Gravel	500	mm
14.	Total Bed Depth Provided	1600	mm
15.	Free Board	80	%
16.	Height of Filter	2880	mm
17.	Height of Filter Provided	2900	mm
18.	B/w Velocity	24	m/hr
19.	B/w Flow	287	m3/hr
20.	B/w Time	15	Min
21.	B/W Volume	72	m3
22.	Air Scoring Velocity	40	m/hr
23.	Air Blower Flow rate	478	m3/hr
24.	Material of Construction	CSEP	
25.	Design Inlet TSS	20 (minimum)	ppm
26.	Outlet TSS	Not more than 1.0	ppm

AIR BLOWER FOR DUAL MEDIA PRESSURE FILTERS

1.	Quantity	2 (1W + 1S)	Nos
2.	Blower Velocity	40	m/hr

**DM PLANT ALONG WITH POTABLE
WATER TREATMENT PLANT**

REVISION:5

	BHARAT HEAVY ELECTRICALS LTD PROJECT ENGINEERING MANAGEMENT
This approval status shall be interpreted as laid down in the contract and it shall not relieve the contractor from the responsibility of meeting the required quality standards.	
APPROVAL CATEGORY AWARDED - I	
CAT I - Approved	
CAT II - Approved With Comments as Note	
CAT III - Not Approved	
CAT IV - Not Approved With Comments	
DEPARTMENT	MECHANICAL AUXILIARY
NAME	<i>[Signature]</i>

BASIC ENGINEERING PACKAGE
DOC NO: PE-V0-408-163-A003

CLIENT :BHARAT HEAVY ELECTRICALS LIMITED
END CLIENT: GUJARAT STATE ELECTRICITY CORPORATION LTD
1 X 800 MW WANAKBORI SUPER CRITICAL THERMAL POWER
PROJECT
CONSULTANT: DEVELOPMENT CONSULTANTS PVT.LTD
DM PLANT ALONGWITH POTABLE WATER TREATMENT PLANT

3.	Blower Capacity Required	= (area of filter * blower velocity) =11.94*40 =478	m3/hr
4.	Blower Capacity Provided	480	m3/hr
5.	Head	4000 (please refer attached pressure drop calculation)	mmWC
6.	Type	Rotary Twin Lobe Oil Free	
Material of Construction			
1.	Casing	CI as per IS-210, Gr FG260	
2.	Lobe	CI as per IS-210, Gr, FG260	

OVERHEAD BACKWASH WATER STORAGE TANK

1.	Quantity	1	No
2.	Type	Rectangular and overhead	
3.	Water required for DMF backwash	72	m3
4.	Water required for one Potable Water Plant DMF backwash	10	m3
5.	Capacity required for single backwash of one (1) no. Dual Media Filters of DM Plant + single backwash of two (2) nos. Dual Media Filters of Potable Water Treatment Plant + 20 % overall margin.	111 (Rev-02)	m3
6.	Material of Construction	RCC	
7.	Dimensions(Rev-05)	7.3 m (L) X 5.4 m (B) X 3 m (Ht) + 0.5 m (FB) + 0.1 m Dead Depth(Rev-05)	
8.	Scope	By BHEL	
9.	Minimum pressure required for Backwash	15	mWC
10.	Minimum water level has to be maintained in the overhead tank	0.5	m

**DM PLANT ALONG WITH POTABLE
WATER TREATMENT PLANT**

REVISION:5

BASIC ENGINEERING PAGE
DOC NO: PE-V0-408-163-A003

This approval status shall be interpreted as laid down in the contractual obligation.

APPROVAL CATEGORY AWARDED +1

CAT I - Approved

CAT II - Approved With Comments as Noted

CAT III - Approved With Comments as Noted

CAT IV - Reference Drawing

DEPARTMENT - MECHANICAL AUXILIARY

DATE - 10/01/2018

APPROVING OFFICER - *Signature*

APPROVING DATE - 10/01/2018

**CLIENT :BHARAT HEAVY ELECTRICALS LIMITED
END CLIENT: GUJARAT STATE ELECTRICITY CORPORATION LTD
1 X 800 MW WANAKBORI SUPER CRITICAL THERMAL POWER
PROJECT
CONSULTANT: DEVELOPMENT CONSULTANTS PVT.LTD
DM PLANT ALONGWITH POTABLE WATER TREATMENT PLANT**

11.	Elevation of tank required to meet the required backwash pressure	14.5	mWC
ACTIVATED CARBON FILTERS			
1.	Quantity	2 (1W+1S)	Nos
2.	Type	Vertical Cylindrical with dished ends	
3.	Gross Flow rate (Please refer Mass Balance)	112.5(Rev-03)	m3/hr
4.	Design Flow Rate	113(Rev-03)	m3/hr
5.	Net Flow rate at the outlet of MB	105	m3/hr
6.	Design Surface Flow rate	15	M3/m2/hr
7.	Area of Filter	7.533(Rev-03)	m2
8.	Diameter	3.098(Rev-03)	M
9.	Diameter provided	3.1	M
10.	Area of Filter provided	7.55 (Rev-02)	m2
11.	Type of Filter Media	Activated Carbon	
12.	Bed Depth	Activated Carbon 1200, Support Gravel 450	mm
13.	Total Bed Depth Provided	1650	mm
14.	Free Board	80	%
15.	Height of Filter	2970	mm
16.	Height of Filter Provided	3000	mm
17.	B/w Velocity	9	m/hr
18.	B/w Flow	68	m3/hr
19.	B/w Time	15	Min
20.	B/W Volume	17	m3
21.	Material of Construction	CSEP	 BHARAT HEAVY ELECTRICALS LTD. PROJECT ENGINEERING MANAGEMENT

DM PLANT ALONG WITH POTABLE WATER TREATMENT PLANT

REVISION:5

BASIC ENGINEERING PACKAGE
DOC NO: PE-V0-408-163-A003

This approval status shall be interpreted as laid down in the contract and it shall not release the contractor from the

contractual obligation.

~~CAT I - Approved~~
CAT II - Approved With Comments as Noted
CAT III - Not Approved

CAT III - Not Approved
CAT IV - Reference Drawing

NAME:	GAJENDRA SINGH	
-------	----------------	---

10.1007/s00339-007-0332-0

10.1007/s00339-007-0332-2

ING PACKAGE

21624002

3-163-A003

CLIENT :BHARAT HEAVY ELECTRICALS LIMITED
END CLIENT: GUJARAT STATE ELECTRICITY CORPORATION LTD
1 X 800 MW WANAKBORI SUPER CRITICAL THERMAL POWER
PROJECT
CONSULTANT: DEVELOPMENT CONSULTANTS PVT.LTD
DM PLANT ALONGWITH POTABLE WATER TREATMENT PLANT

WEAK ACID CATION EXCHANGER

1.	Quantity	2 (1W+1S)	Nos
2.	Type	Vertical Cylindrical with dished ends	
3.	Gross Flow rate (Please refer Mass Balance and attached DM projection)	112.26(Rev-03)	m3/hr
4.	Net flow (18 hr basis)	111.28(Rev-03)	m3/hr
5.	Water for regeneration (18 hr basis)	0.98(Rev-03)	m3/hr
6.	Design Flow Rate	112.26(Rev-03)	m3/hr
7.	Net Flow rate at the outlet of MB	105	m3/hr
8.	Operating hours	18	hrs
9.	Net OBR	1890	M3
10.	Design surface flow rate	39.9(Rev-03)	M3/m2/hr
11.	Internal Dia (Excluding Rubber lining)Provided (Please refer attached Annexure-1)	1900	mm
12.	Bed Depth (Please refer attached Annexure-1)	Effective Bed Depth 1121, (Rev-03)	mm
13.	Resin volume required	3148(Rev-03)	Ltrs
14.	Resin Volume provided (Please refer attached Annexure-1)	3150(Rev-03)	Ltrs
15.	Type of Resin	Cross linked Polyacrylic Acid Containing Carboxylic Acid Functional group	
16.	Trade Name	Purolite® C104Plus	
17.	Free Board	80	%
18.	Height Provided	2100(Rev-03)	mm
19.	Material Of Construction	CSRL with cleats of internal supports of SS316	(Rev-02)

DM PLANT ALONG WITH POTABLE WATER TREATMENT PLANT
REVISION:5

BASIC ENGINEERING PACKAGE
DOC NO: PE-V0-408-163-A003

CLIENT :BHARAT HEAVY ELECTRICALS LIMITED
END CLIENT: GUJARAT STATE ELECTRICITY CORPORATION LTD
1 X 800 MW WANAKBORI SUPER CRITICAL THERMAL POWER
PROJECT
CONSULTANT: DEVELOPMENT CONSULTANTS PVT.LTD
DM PLANT ALONGWITH POTABLE WATER TREATMENT PLANT

STRONG ACID CATION EXCHANGER

1.	Quantity	2 (1W+1S)	Nos
2.	Type	Vertical Cylindrical with dished ends	
3.	Gross Flow rate (Please refer Mass Balance and attached DM projection)	111.28(Rev-03)	m3/hr
4.	Design Flow Rate	111.28(Rev-03)	m3/hr
5.	Net Flow rate at the outlet of MB	105	m3/hr
6.	Operating hours	18	hrs
7.	Net OBR	1890	M3
8.	Design surface flow rate	39.6(Rev-03)	M3/m2/hr
9.	Internal Dia (Excluding Rubber lining) Provided (Please refer attached Annexure-1)	1900	mm
10.	Bed Depth (Please refer attached Annexure-1)	Effective Bed Depth 1156, Inert Bed Depth 150(Rev-03)	mm
11.	Resin Volume (Please refer attached Annexure-1)	3245(Rev-03)	Ltrs
12.	Inert resin Volume	425	Ltrs
13.	Type of Resin	Strongly Acidic Polystyrene microporous Resin with DBV cross linking(Rev-03)	
14.	Trade Name	Purolite® PFC100H	
15.	Free Board	80	%
16.	Height Provided	2400	mm
17.	Material Of Construction	CSRL with cleats of internal supports of SS316	(Rev-02)

PROJECT ENGINEERING MANAGEMENT

This approval status shall be interpreted as laid down in the contract and it shall not relieve the contractor from the contractual obligations.

APPROVAL CATEGORY AWARDED = I

CAT I - Approved with Comments as Noted

CAT II - Not Approved

CAT IV - Reference Drawing

APPROVING OFFICER - MECHANICAL AUXILIARY

NAME: GAJENDRA SINGH

**DM PLANT ALONG WITH POTABLE
WATER TREATMENT PLANT**

REVISION:5

**BASIC ENGINEERING PACKAGE
DOC NO: PE-V0-408-163-A003**

CLIENT :BHARAT HEAVY ELECTRICALS LIMITED
END CLIENT: GUJARAT STATE ELECTRICITY CORPORATION LTD
1 X 800 MW WANAKBORI SUPER CRITICAL THERMAL POWER
PROJECT
CONSULTANT: DEVELOPMENT CONSULTANTS PVT.LTD
DM PLANT ALONGWITH POTABLE WATER TREATMENT PLANT

DEGASSER TOWER

1.	Quantity	2 (1W+1S)	Nos
2.	Gross Flow rate (Please refer Mass Balance)	110.87(Rev-03)	m3/hr
3.	Net flow (18 hr basis)	108.15(Rev-03)	m3/hr
4.	Water for regeneration (18 hr basis)	2.72(Rev-02)	m3/hr
5.	Design Flow Rate (120% of gross flow)	133(Rev-02)	m3/hr
6.	Net Flow Rate at the outlet of MB	105	m3/hr
7.	Maximum and minimum capacity	20 % and 120 %(Rev-02)	m3/hr
8.	Surface Flow rate	60	m3/m2/hr (Rev-04)
9.	Area required	2.22 (Rev-02)	m2
10.	Diameter Required	1.68 (Rev-02)	m
11.	Internal Dia (Excluding Rubber lining) Provided	1.7	M
12.	Packing Height	2.5 (Rev-02)	m
13.	Height of Tower with 50% free board	3.75 (Rev-02)	m
14.	Media Provided	PP Rings	
15.	Packing Volume/Tower	5.672 (Rev-02)	m3
16.	CO2 at the outlet of degasser tower	Shall be less than 5 ppm as CO2 (Rev-02)	<small>SHARAT HEAVY ELECTRICALS LTD PROJECT ENGINEERING MANAGEMENT This approval status shall be interpreted as laid down in the contract and it shall not relieve the contractor from the responsibility of meeting the required standards.</small>
17.	Material of construction	CSRL	<small>APPROVAL CATEGORY AWARDED + I CAT I - Approved With Comments as Noted CAT II - Not Approved CAT IV - Reference Drawing DEPARTMENT - MECHANICAL AUXILIARY NAME - GAURENDRA SINGH</small>

DEGASSER AIR BLOWERS

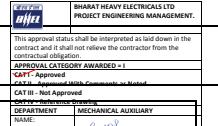
1.	Quantity	4 (1W + 1S for each stream)	Nos
2.	Type of Blower	Centrifugal, Oil free	
3.	Air : Water Ratio	23.5(Rev-02)	m/hr

**DM PLANT ALONG WITH POTABLE
WATER TREATMENT PLANT**

REVISION:5

**BASIC ENGINEERING PACKAGE
DOC NO: PE-V0-408-163-A003**

CLIENT :BHARAT HEAVY ELECTRICALS LIMITED
END CLIENT: GUJARAT STATE ELECTRICITY CORPORATION LTD
1 X 800 MW WANAKBORI SUPER CRITICAL THERMAL POWER
PROJECT
CONSULTANT: DEVELOPMENT CONSULTANTS PVT.LTD
DM PLANT ALONGWITH POTABLE WATER TREATMENT PLANT


4.	Blower Capacity	=133 * 23.5 =3125.5(Rev-02)	m3/hr
5.	Blower Capacity selected	3150(Rev-02)	m3/hr
6.	Head	100 (please refer attached pressure drop calculation)	mmWC
Material of Construction			
1.	Casing	CI/CS	
2.	Impeller	CI/CS	

DEGASSED WATER STORAGE TANK

1.	Quantity	2 (1 No for Each stream)	Nos.
2.	Type	Horizontal Cylindrical with Dished Ends	
3.	Capacity with 20% margin (Please Refer annexure - 2 Table A.2.2)	185(Rev-02)	m3
4.	Dimensions (Inclusive of 0.3 m FB+ 0.1 m Dead depth)	4.8 m (Dia) X 9 m (LOS)(Rev-02)	
5.	Material of Construction	CSRL	

For dimension arrival calculation, pls refer Annexure – 2, Table no.A. 2.3

DEGASSED WATER TRANSFER PUMPS

1.	Quantity	4(1W + 1S for each stream)	Nos
2.	Capacity	120 (Rev-02)	m3/hr
3.	Head	45(Rev-03) (please refer attached pressure drop calculation)	mWC
4.	Shut-off head(Rev-02)	49.5(Rev-03)	mWC
5.	Efficiency at rated capacity(Rev-02)	65	%
6.	Type	Horizontal Centrifugal	
Material of Construction		 BHARAT HEAVY ELECTRICALS LTD PROJECT ENGINEERING MANAGEMENT This approval status shall be interpreted as laid down in the contractual obligation and not relieve the contractor from the contractual obligation. APPROVAL CATEGORY AWARDED : I APPROVAL STATUS : APPROVED CAT-I : Approval Under Contract as Notified CAT-III : Not Approved APPROVAL NUMBER : 10000000000000000000000000000000 DEPARTMENT : MECHANICAL AUXILIARY NAME : GAGENDRA SINGH 	

**DM PLANT ALONG WITH POTABLE
WATER TREATMENT PLANT**

REVISION:5

**BASIC ENGINEERING PACKAGE
DOC NO: PE-V0-408-163-A003**

CLIENT :BHARAT HEAVY ELECTRICALS LIMITED
END CLIENT: GUJARAT STATE ELECTRICITY CORPORATION LTD
1 X 800 MW WANAKBORI SUPER CRITICAL THERMAL POWER
PROJECT
CONSULTANT: DEVELOPMENT CONSULTANTS PVT.LTD
DM PLANT ALONGWITH POTABLE WATER TREATMENT PLANT

1.	Casing	SS-316	
2.	Impeller	SS-316	
3.	Rated Speed	1500	rpm

WEAK BASE ANION EXCHANGER

1.	Quantity	2 (1W+1S)	Nos
2.	Type	Vertical Cylindrical with dished ends	
3.	Gross Flow rate (Please refer Mass Balance and attached DM projection)	108.55(Rev-03)	m3/hr
4.	Net flow (18 hr basis)	107.57(Rev-03)	m3/hr
5.	Water for regeneration (18 hr basis)	0.98(Rev-03)	m3/hr
6.	Design Flow rate	108.55(Rev-03)	m3/hr
7.	Net Flow rate at the outlet of MB	105	m3/hr
8.	Operating hours	18	Hrs
9.	Net OBR	1890	M3
10.	Design surface flow rate	38.7(Rev-03)	M3/m2/hr
11.	Internal Dia (Excluding Rubber lining) Provided (Please refer attached Annexure-1)	1900	Mm
12.	Bed Depth (Please refer attached Annexure-1)	Effective Bed Depth 1048(Rev-02)	Mm
13.	Resin volume required	2942(Rev-03)	Ltrs
14.	Resin Volume (Please refer attached Annexure-1)	2945(Rev-03)	Ltrs
15.	Type of Resin	High Capacity macro porous polystyrene resin with DBV cross-linking and tertiary amine functional group having weak base capacity not less than 80%	

**DM PLANT ALONG WITH POTABLE
WATER TREATMENT PLANT**

REVISION:5

BHARAT HEAVY ELECTRICALS LTD
BASIC ENGINEERING MANAGEMENT
The approval stamp shall be interpreted as laid down in the
contract and it shall not relieve the contractor from the
contractual obligations.
CAT II - Approved
CAT II - Approved With Comments as noted
DEPARTMENT : AEROSPACE ALUMINUM
DOC NO: PE-V0-408-163-A005

CLIENT :BHARAT HEAVY ELECTRICALS LIMITED
END CLIENT: GUJARAT STATE ELECTRICITY CORPORATION LTD
1 X 800 MW WANAKBORI SUPER CRITICAL THERMAL POWER
PROJECT
CONSULTANT: DEVELOPMENT CONSULTANTS PVT.LTD
DM PLANT ALONGWITH POTABLE WATER TREATMENT PLANT

16.	Trade Name	Purolite® A100Plus	
17.	Free Board	100	%
18.	Height Provided	2100(Rev-03)	
19.	Material Of Construction	CSRL with cleats of internal supports of SS316	

STRONG BASE ANIONEXCHANGER

1.	Quantity	2 (1W+1S)	Nos
2.	Type	Vertical Cylindrical with dished ends	
3.	Gross Flow rate (Please refer mass balance and attached DM projection)	107.57(Rev-03)	m3/hr
4.	Net flow (18 hr basis)	106.83(Rev-03)	m3/hr
5.	Water for regeneration (18 hr basis)	0.74(Rev-03)	m3/hr
6.	Design Flow Rate	107.57(Rev-03)	m3/hr
7.	Net Flow rate at the outlet of MB	105	m3/hr
8.	Operating hours	18	Hrs
9.	Net OBR	1890	M3
10.	Design surface flow rate	38.2	M3/m2/hr
11.	Internal Dia (Excluding Rubber lining)Provided (Please refer attached Annexure-1)	1900	Mm
12.	Bed Depth (Please refer attached Annexure-1)	Effective Bed Depth 1474, Inert bed Depth 150(Rev-03)	mm
13.	Resin volume required	4139(Rev-03)	Ltrs
14.	Effective Resin Volume (Please refer attached Annexure-1)	4140(Rev-03)	Ltrs

REVISION: 001 SHARAT HEAVY ELECTRICALS LTD

SHARAT HEAVY ELECTRICALS LTD

MANUFACTURING & MANAGEMENT

This approval status shall be interpreted as laid down in the contract and shall not relieve the contractor from the responsibility of the work.

APPROVAL CATEGORY AWARDED = I

CAT I - Approved

CAT II - Approved With Comments as Noted

CAT III - Not Approved

CAT IV - Rejection Pending

DEPARTMENT: MECHANICAL AUXILIARY

NAME: *[Signature]* *[Signature]*

**DM PLANT ALONG WITH POTABLE
WATER TREATMENT PLANT**

REVISION:5

**BASIC ENGINEERING PACKAGE
DOC NO: PE-V0-408-163-A003**

CLIENT :BHARAT HEAVY ELECTRICALS LIMITED
END CLIENT: GUJARAT STATE ELECTRICITY CORPORATION LTD
1 X 800 MW WANAKBORI SUPER CRITICAL THERMAL POWER
PROJECT
CONSULTANT: DEVELOPMENT CONSULTANTS PVT.LTD
DM PLANT ALONGWITH POTABLE WATER TREATMENT PLANT

15.	Inert resin Volume	425	Ltrs
16.	Type of Resin(Rev-02)	High Capacity strongly basic Type-1 polystyrene resin with DBV cross linking and quaternary ammonium functional group -Chloride Form - Macroporous(Rev-03)	
17.	Trade Name	Purolite® PPA500 Plus	
18.	Free Board	100	%
19.	Height Provided	3300(Rev-03)	mm
20.	Material Of Construction	CSRL with cleats of internal supports of SS316	(Rev-02)

MIXED BED EXCHANGER

1.	Quantity	2 (1W+1S)	Nos
2.	Type	Vertical Cylindrical with dished ends	
3.	Gross Flow rate (Please refer Mass Balance and attached DM projection)	106.83(Rev-02)	m3/hr
4.	Net Flow rate at the outlet of MB	105	m3/hr
5.	Water for regeneration (126 hr basis for MB and 18 hrs for WBA , SBA.)	1.83(Rev-02)	m3/hr
6.	Design Flow rate	106.83(Rev-02)	m3/hr
7.	Time Period for each Service Cycle between two consecutive regenerations(Rev-02)	126	hrs
8.	Net OBR	13230	M3
9.	Design surface flow rate	53.6	M3/m2/hr
10.	Internal Dia (Excluding Rubber lining) Provided (Please refer attached Annexure-1)	1600	mm
11.	Bed Depth (Please refer attached)	Cation Resin 503& Anion Resin 503& Inert resin	mm

**DM PLANT ALONG WITH POTABLE
WATER TREATMENT PLANT**

	BHARAT HEAVY ELECTRICALS LTD.
	PROJECT ENGINEERING MANAGEMENT
This approved stamp shall be interpreted as laid down in the contract and it shall not release the contractor from the contractual obligation.	
APPROVAL STAMP AWARDED +1	
CAT-I - Approved	
CAT-II - Approved With Comments as Noted	
CAT-III - Approved	
CAT-IV - Reference Drawing	
DEPARTMENT	MECHANICAL AUXILIARY
NAME	GANGA SINGH
DATE	<i>[Signature]</i>

REVISION:5

**BASIC ENGINEERING PACKAGE
DOC NO: PE-V0-408-163-A003**

CLIENT :BHARAT HEAVY ELECTRICALS LIMITED
END CLIENT: GUJARAT STATE ELECTRICITY CORPORATION LTD
1 X 800 MW WANAKBORI SUPER CRITICAL THERMAL POWER
PROJECT
CONSULTANT: DEVELOPMENT CONSULTANTS PVT.LTD
DM PLANT ALONGWITH POTABLE WATER TREATMENT PLANT

	Annexure-1)	(Anion – 75& Cation resin – 75) (Rev-03)	
12.	Resin Volume (Please refer attached Annexure-1)	Cation Resin 1000 & Anion Resin 1000	Ltrs
13.	Inert resin Volume (Rev-02)	Inert resin (Anion – 150& Cation resin – 150) (Rev-03)	Ltrs
14.	Type of Resin	Strongly Acidic Polystyrene Resin with DBV cross linking and High capacity strongly basic Type-1 Polystyrene resin with DBV cross linking and quaternary ammonium functional group - Macroporous. (Rev-03)	
15.	Trade Name	Purolite® PFC100 and Purolite® PPA500	(Rev-03)
16.	Free Board	100	%
17.	Height Provided (Rev-02)	2400	mm
18.	Material Of Construction	CSRL with cleats of internal supports of SS316	(Rev-02)

AIR BLOWER COMMON FOR MIXED BED AND NEUTRALIZATION PIT

1.	Quantity	2 (1W + 1S)	Nos
2.	Type of Blower	Rotary, Twin Lobe	
3.	Air required for 2 nos. MB (Rev-02)	=2 * Area of MB Vessel * 120(air scouring Velocity) = 2 * 2.01 * 120= 484 (Rev-03)	m3/hr
4.	Air required for 2 nos. MB (Rev-02)	484 (Rev-03)	m3/hr
5.	Air required for NPIT	0.6 times the volume of N-PIT for mixing = (0.6*342) = 205.2 (Rev-02)	m3/hr
6.	Air required for NPIT	205.2 (Rev-02)	m3/hr
7.	Blower capacity required	689.2 (Rev-03)	m3/hr
8.	Blower Capacity provided	700 (Rev-03)	m3/hr
9.	Head	4000 (please refer attached pressure drop calculation)	mmWC

THIS APPROVAL	BHARAT HEAVY ELECTRICALS LTD
CONTRACT NO.	PROJECT ENGINEERING MANAGEMENT.
This approval shall be issued and valid down in the contract and shall not relieve the contractor from the	
APPROVAL	RECOGNITION
CAT I - Approved	Approved
CAT II - Approved	Approved
CAT III - Approved	Approved
DATE	REVISION
2023-08-01	00
NAME: GAJENDRA BH	Signature

APPROVAL	RECOGNITION
CAT I - Approved	Approved
CAT II - Approved	Approved
CAT III - Approved	Approved
DATE	REVISION
2023-08-01	00
NAME: GAJENDRA BH	Signature

MECHANICAL AUXILIARY

REVISION: 5

Page 26 of 72

CLIENT :BHARAT HEAVY ELECTRICALS LIMITED
END CLIENT: GUJARAT STATE ELECTRICITY CORPORATION LTD
1 X 800 MW WANAKBORI SUPER CRITICAL THERMAL POWER
PROJECT
CONSULTANT: DEVELOPMENT CONSULTANTS PVT.LTD
DM PLANT ALONGWITH POTABLE WATER TREATMENT PLANT

Material of Construction			
1.	Casing	CI to IS210 FG 260	
2.	Lobes	CS to BS 970, EN9 Forged	
REGENERATION WATER TRANSFER PUMP			
1.	Quantity	2 (1W + 1S)	Nos
2.	Capacity	= Max flow required for slow rinse of SBA and WBA =6.2 +9(Rev-02) = 15.2	m3/hr
3.	Capacity provided with 20% margin	20(Rev-02)	m3/hr
4.	Head	30(Rev-01) (please refer attached pressure drop calculation)	mWC
5.	Shut-Off Head	35	mWC
6.	Efficiency	65	%
7.	Type	Horizontal Centrifugal	
Material of Construction			
1.	Casing	SS-316	
2.	Impeller	SS-316	
3.	Rated Speed	1500	rpm
ACID MEASURING TANK FOR SAC			
1.	Quantity	2	Nos
2.	Type	Vertical Cylindrical with flat bottom	
3.	Chemical per Regeneration (Please refer attached Annexure-I)	454.3(Rev-03)	Kg
4.	Chemical available Concentration	30	%

DNV-GL	BHARAT HEAVY ELECTRICALS LTD	PROJECT ENGINEERING MANAGEMENT
This approval contract and license is issued for the following project:		
This approval shall be interpreted as laid down in the contract and license and shall not relieve the contractor from the obligations of the contract.		
APPROVAL CONTRACT AND LICENSE		
CAT I- Approved		
CAT II- Approved with Comments as noted		
CAT III- Not Approved		
CAT IV- Reference Drawing		
DRAWING NUMBER		
NAME		
GAJENDRA SHARMA		
DATE		

**DM PLANT ALONG WITH POTABLE
WATER TREATMENT PLANT**

REVISION:5

**BASIC ENGINEERING PACKAGE
DOC NO: PE-V0-408-163-A003**

CLIENT :BHARAT HEAVY ELECTRICALS LIMITED
END CLIENT: GUJARAT STATE ELECTRICITY CORPORATION LTD
1 X 800 MW WANAKBORI SUPER CRITICAL THERMAL POWER
PROJECT
CONSULTANT: DEVELOPMENT CONSULTANTS PVT.LTD
DM PLANT ALONGWITH POTABLE WATER TREATMENT PLANT

5.	Specific Gravity @ Available Concentration	1.13 (Rev-02)	Kg/l
6.	Capacity required with 20 % margin(Rev-02)	= (kg req per regeneration /Sp.gravity /concentration)+20% margin =(452.9/1.13/30%)*1.2 =1609(Rev-03)	Litres
7.	Capacity provided with 20 % margin(Rev-02)	1650	Litres
8.	Dimensions	1.3 m (Dia) X 1.27 m (Ht) + 0.3 m (FB) + 0.1 m Dead depth	
9.	Material of Construction	CSRL	

ACID MEASURING TANK FOR MB

1.	Quantity	1	No
2.	Type	Vertical Cylindrical with flat bottom	
3.	Chemical per Regeneration (Please refer attached Annexure-I)	100	Kg
4.	Chemical available Concentration	30	%
5.	Specific Gravity @ Available Concentration	1.13 (Rev-02)	Kg/l
6.	Capacity required with 20 % margin	= (kg req per regeneration /Sp.gravity /concentration)+20% margin =(100/1.13/30%)*1.2 =354(Rev-02)	Litres
7.	Capacity provided with 20 % margin	400(Rev-02)	Litres
8.	Dimensions	0.8 m (Dia) X 0.825 m (Ht) + 0.3 m (FB) + 0.1 m Dead Depth	
9.	Material of Construction	CSRL	

BHARAT HEAVY ELECTRICALS PROJECT ENGINEERING MANAGEMENT
This approval is valid for the period of one year from the date of issue. It shall be interpreted as laid down in the contract and the conditions of the contract.
NOTES: 1. GLOSSARY AWARDED = 1. 2. CAT-I - Approved and With Comments as Noted 3. CAT-II - Approved 4. CAT-IV - Reference Drawing 5. DEPARTMENT - MECHANICAL AUXILIARY 6. APPROVED BY - <i>[Signature]</i> 7. DATE - <i>[Signature]</i> 8. GAJENDRA SINGH - <i>[Signature]</i>

DM PLANT ALONG WITH POTABLE WATER TREATMENT PLANT

REVISION:5

BASIC ENGINEERING PACKAGE
DOC NO: PE-V0-408-163-A003

CLIENT :BHARAT HEAVY ELECTRICALS LIMITED
END CLIENT: GUJARAT STATE ELECTRICITY CORPORATION LTD
1 X 800 MW WANAKBORI SUPER CRITICAL THERMAL POWER
PROJECT
CONSULTANT: DEVELOPMENT CONSULTANTS PVT.LTD
DM PLANT ALONGWITH POTABLE WATER TREATMENT PLANT

ACID MEASURING TANK FOR NEUTRALIZATION PIT

(WHEN WAC, WBA, SAC, SBA ALONE ARE IN REGENERATION)

1.	Quantity	1	No
2.	Type	Vertical Cylindrical with flat bottom	
3.	HCL Excess eq difference (Please refer attached Annexure-I)	= Excess NaOH – Excess HCL =4551-2221(Rev-03)	Eq
4.	Neutralizing Chemical per Regeneration	= Excess eq difference * 36.5/1000 =85.05(Rev-03)	Kg
5.	Chemical available Concentration	30	%
6.	Specific Gravity @ Available Concentration	1.13(Rev-02)	Kg/l
7.	Capacity required with 20 % margin	= (kg req per regeneration /Sp.gravity /concentration)+20% margin =(85.05/1.13/30%)*1.2 =302(Rev-03)	Litres
8.	Capacity provided	400	Litres
9.	Dimensions	0.8 m (Dia) X 0.825 m (Ht) + 0.3 m (FB) + 0.1 m Dead Depth	
10.	Material of Construction	CSRL	

ACID MEASURING TANK FOR NEUTRALIZATION PIT

(WHEN WAC, WBA, SAC, SBA AND MB ARE IN REGENERATION)

1.	Quantity	1	No
2.	Type	Vertical Cylindrical with flat bottom	
3.	NaOH Excess Eq difference (Please refer attached Annexure-I)	= Excess NaOH- Excess HCL =((4551+2208)-(2221+2471)) = 2067(Rev-03)	Eq

**DM PLANT ALONG WITH POTABLE
WATER TREATMENT PLANT**

REVISION:5

**BASIC ENGINEERING PACKAGE
DOC NO: PE-V0-408-163-A003**

CLIENT :BHARAT HEAVY ELECTRICALS LIMITED
END CLIENT: GUJARAT STATE ELECTRICITY CORPORATION LTD
1 X 800 MW WANAKBORI SUPER CRITICAL THERMAL POWER
PROJECT
CONSULTANT: DEVELOPMENT CONSULTANTS PVT.LTD
DM PLANT ALONGWITH POTABLE WATER TREATMENT PLANT

4.	Neutralizing Chemical per Regeneration	= Excess Eq difference * 36.5/1000 =75.45(Rev-03)	Kg
5.	Chemical available Concentration	30	%
6.	Specific Gravity @ Available Concentration	1.13	Kg/l
7.	Capacity required with 20 % margin	= (kg req per regeneration /Sp.gravity /concentration)+20% margin =(75.45/1.13/30%)*1.2 =268(Rev-03)	Litres
8.	Capacity provided with 20 % margin	300	Litres

Since AMT for Npit requirement for without MB regeneration is higher than with MB. Hence AMT for Npit will be considered as 400 ltrs. (Rev-03)

BULK ACID STORAGE TANK

1.	Quantity	2	Nos
2.	Type	Horizontal Cylindrical with dished ends, over ground	
3.	Cycle Time for SAC	18	Hours
4.	Cycle Time for MB Cation	126	Hours
5.	Storage period	21	days
6.	Storage period in hours	= (21*24) = 504	hours
7.	No. of cycles for SAC	= (504/18) = 28	Nos.
8.	No. of cycles for MB Cation	= (504/126) = 4	Nos.
9.	No. of cycles for N-Pit Acid Requirement for neutralization (during WAC,SAC, WBA and SBA regeneration alone)	= (504/18) = 28	<div style="display: flex; justify-content: space-between;"> <div style="flex: 1;"> <p>BHARAT HEAVY ELECTRICALS LTD </p> <p>PROJECT ENGINEERING MANAGEMENT</p> <p>This approval status shall be interpreted as bid down in the contract and it shall not relieve the contractor from the contractual obligation.</p> <p>APPROVAL STAMP/ SIGNATORY AWARDED = 1</p> <p>CAT I - Approved CAT II - Approved With Comments as Noted CAT III - Reference Drawing</p> <p>DEPARTMENT MECHANICAL AUXILIARY NAME GAURAV SINGH </p> </div> <div style="flex: 1; text-align: right;"> <p>NOS.</p> </div> </div>

	DM PLANT ALONG WITH POTABLE WATER TREATMENT PLANT	BASIC ENGINEERING PACKAGE DOC NO: PE-V0-408-163-A003
		REVISION:5

CLIENT :BHARAT HEAVY ELECTRICALS LIMITED
END CLIENT: GUJARAT STATE ELECTRICITY CORPORATION LTD
1 X 800 MW WANAKBORI SUPER CRITICAL THERMAL POWER
PROJECT
CONSULTANT: DEVELOPMENT CONSULTANTS PVT.LTD
DM PLANT ALONGWITH POTABLE WATER TREATMENT PLANT

10.	Chemical Requirement for 28 Cycles for SAC(Rev-03)	= (kg req per regeneration /Sp.gravity /concentration/1000) * 28 =(454.3/1.13/30%/1000)*28 =37.523	m3
11.	Chemical Requirement for 4 Cycles for MB Cation(Rev-03)	= (kg req per regeneration /Sp.gravity /concentration/1000) * 4 =(100/1.13/30%/1000)*4 =1.18	m3
12.	Chemical Requirement for 28 Cycles for N-Pit Acid Requirement(during WAC,SAC, WBA and SBA regeneration alone is considered since including MB will be the chemical quantity will be lesser) (Rev-03)	= (kg req per regeneration /Sp.gravity /concentration/1000) * 28 =(85.05/1.13/30%/1000)*28 =6.97	m3
13.	Capacity of tank with 20% margin(Rev-03)	54.8	m3
14.	Dimensions (including 0.3 m FB and 0.1 m dead depth)(Rev-03)	3.2 m (Dia) X 6.3 m (LOS)	

For dimension arrival calculation, pls refer Annexure – 2, Table no.A. 2.3

15.	Material of Construction	CSRL	
ACID UNLOADING PUMP			
1.	Quantity	2 (1W + 1S)	Nos
2.	Capacity	15	m3/hr
3.	Head	20	mWC
4.	Type	Horizontal Centrifugal Non Clog	

	DM PLANT ALONG WITH POTABLE WATER TREATMENT PLANT	BASIC ENGINEERING PACKAGE DOC NO: PE-V0-408-163-A003
	REVISION:5	

CLIENT :BHARAT HEAVY ELECTRICALS LIMITED
END CLIENT: GUJARAT STATE ELECTRICITY CORPORATION LTD
1 X 800 MW WANAKBORI SUPER CRITICAL THERMAL POWER
PROJECT
CONSULTANT: DEVELOPMENT CONSULTANTS PVT.LTD
DM PLANT ALONGWITH POTABLE WATER TREATMENT PLANT

Material of Construction			
1.	Casing	PP	
2.	Impeller	PP	
3.	Rated Speed	1500	rpm

CAUSTIC MEASURING TANK FOR SBA

1.	Quantity	2	Nos
2.	Type	Vertical Cylindrical with flat bottom	
3.	Chemical per Regeneration (Please refer attached Annexure-I)	372.6 (Rev-03)	Kg
4.	Chemical available Concentration	30	%
5.	Specific Gravity @ Concentration in measuring tank	1.3	Kg/l
6.	Capacity required with 20 % margin	= (kg req per regeneration /Sp.gravity /concentration)+20% margin =(372.6/1.3/30%)*1.2 =1147(Rev-03)	Litres
7.	Capacity provided with 20 % margin	1200	Litres
8.	Dimensions(Rev-02)	1.1 m (Dia) X 1.3 m (Ht) + 0.3 m (FB) + 0.1 m Dead Depth	
9.	Material of Construction	CSRL	

CAUSTIC MEASURING TANK FOR MB

1.	Quantity	1	No
2.	Type	Vertical Cylindrical with flat bottom	
3.	Chemical per Regeneration (Please refer attached Annexure-I)	100	Kg

**DM PLANT ALONG WITH POTABLE
WATER TREATMENT PLANT**

REVISION:5

BHARAT HEAVY ELECTRICALS LTD
DEPARTMENT : ENGINEERING CONSULTANCY & MANUFACTURING
APPROVAL STATUS
 This approved status shall be interpreted as lead down in the contract and it does not relieve the contractor from the contractual obligation.
APPROVAL CATEGORY AWARDED
CAT I - Approved
CAT II - Approved With Comments as Noted
DEPARTMENT : MECHANICAL AUXILIARY
DOC NO: PE-V0-408-165-A003

CLIENT :BHARAT HEAVY ELECTRICALS LIMITED
END CLIENT: GUJARAT STATE ELECTRICITY CORPORATION LTD
1 X 800 MW WANAKBORI SUPER CRITICAL THERMAL POWER
PROJECT
CONSULTANT: DEVELOPMENT CONSULTANTS PVT.LTD
DM PLANT ALONGWITH POTABLE WATER TREATMENT PLANT

4.	Chemical available Concentration	30	%
5.	Specific Gravity @ Available Concentration	1.3	Kg/l
6.	Capacity required with 20 % margin	= (kg req per regeneration /Sp.gravity /concentration)+20% margin =(100/1.3/30%)*1.2 =308	Litres
7.	Capacity provided with 20 % margin	400	Litres
8.	Dimensions(Rev-02)	0.8 m (Dia) X 0.825 m (Ht) + 0.3 m (FB) + 0.1 m Dead depth	
9.	Material of Construction	CSRL	

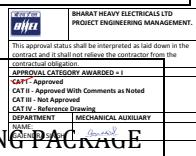
CAUSTIC MEASURING TANK FOR NEUTRALIZATION PIT

(WHEN WAC, WBA, SAC, SBA ALONE ARE IN REGENERATION)OR(WHEN WAC, WBA, SAC, SBA MB ARE IN REGENERATION) – in both cases acid is used for the neutralization.

however Safety factor and in order to meet tender requirement CMT for NPIT is provided as below details. (Rev-03)

1.	Quantity	1	No
2.	Capacity provided with 20 % margin	400 (Rev-04)	Litres
3.	Dimensions	0.8 m (Dia) X 0.825 m (Ht) + 0.3 m (FB) + 0.1 m Dead depth(Rev-04)	
4.	Material of Construction	CSRL	

BULK CAUSTIC STORAGE TANK


1.	Quantity	2	Nos
2.	Type	Horizontal Cylindrical with dished ends	
3.	Cycle Time for SBA	18	Hours

**DM PLANT ALONG WITH POTABLE
WATER TREATMENT PLANT**

REVISION:5

BASIC ENGINEERING PACKAGE
DOC NO: PE-V0-408-163-A003

CLIENT :BHARAT HEAVY ELECTRICALS LIMITED
END CLIENT: GUJARAT STATE ELECTRICITY CORPORATION LTD
1 X 800 MW WANAKBORI SUPER CRITICAL THERMAL POWER
PROJECT
CONSULTANT: DEVELOPMENT CONSULTANTS PVT.LTD
DM PLANT ALONGWITH POTABLE WATER TREATMENT PLANT

4.	Cycle Time for MB Anion	126	Hours
5.	Storage period	21	days
6.	Storage period in hours	=21*24 =504	hours
7.	No. of cycles for SBA	=504/18 =28	Nos.
8.	No. of cycles for MB Anion	=504/126 = 4	Nos.
9.	No. of cycles for N-Pit Alkali Requirement (during SBA,WBA,MB anion regeneration)	=504/126 = 4	Nos.
10.	Chemical Requirement for 28 Cycles for SBA	= (kg req per regeneration /Sp.gravity /concentration) * 28 =(372.6/1.47/48%/1000)*28 =14.79 (Rev-03)	m3
11.	Chemical Requirement for 4 Cycles for MB Anion	= (kg req per regeneration /Sp.gravity /concentration/1000) * 4 =(100/1.47/48%/1000)*4 =0.57(Rev-02)	m3
12.	Capacity of tank with 20% margin	18.44(Rev-03)	m3
13.	Dimensions including 0.3 m FB and 0.1 m dead depth (Rev-03)	2.3 m (Dia) X 4.2 m (LOS)	

EX-001	BHARAT HEAVY ELECTRICALS LTD PROJECT ENGINEERING MANAGEMENT.
This document is to be implemented as day-to-day operation and a client not relieve the contractor from the contractual obligation.	
APPROVAL CATEGORY AWARDED = 1	
CAT 1 - Approved	
CAT 2 - Approved With Comments as Noted	
CAT 3 - Approved With Reservations	
CAT 4 - Reference Drawing	
DEPARTMENT : MECHANICAL AUXILIARY	
NAME : RAJENDRA SINGH <i>(Signature)</i>	

For dimension arrival calculation, pls refer Annexure – 2, Table no.A. 2.3

14.	Material of Construction	CSRL	
CAUSTIC UNLOADING PUMP			
1.	Quantity	2 (1W + 1S)	Nos
2.	Capacity	15	m3/hr
3.	Head	20	mWC

<p>बी एच ई एल BHEL</p>	DM PLANT ALONG WITH POTABLE WATER TREATMENT PLANT	BASIC ENGINEERING PACKAGE DOC NO: PE-V0-408-163-A003
		REVISION:5

CLIENT :BHARAT HEAVY ELECTRICALS LIMITED
END CLIENT: GUJARAT STATE ELECTRICITY CORPORATION LTD
1 X 800 MW WANAKBORI SUPER CRITICAL THERMAL POWER
PROJECT
CONSULTANT: DEVELOPMENT CONSULTANTS PVT.LTD
DM PLANT ALONGWITH POTABLE WATER TREATMENT PLANT

4.	Type	Horizontal Centrifugal Non Clog	
	Material of Construction		
1.	Casing	SS316	
2.	Impeller	SS316	
3.	Rated Speed	1500	rpm

ALKALI TRANSFER CUM RECIRCULATION PUMPS

1.	Quantity	2(1W + 1S)	Nos
2.	Capacity	10	m3/hr
3.	Head	20	mWC
4.	Type	Horizontal Centrifugal Non-Clog	
	Material of Construction		
1.	Casing	SS316	
2.	Impeller	SS316	
3.	Rated Speed	1500	rpm

ACTIVATED CARBON FILTER FOR ALKALI SERVICE

1.	Quantity	1	No												
2.	Type	Vertical Cylindrical with dished ends													
3.	Flow rate	10	m3/hr												
4.	Design Surface Flow rate	15	m3/m2/hr												
5.	Area of Filter	0.67	m2												
6.	Diameter	0.922	m												
7.	Internal Diameter provided (Excluding Rubber Lining)	1	m												
8.	Area of Filter provided	0.785	m2												
9.	Type of Filter Media	Activated Carbon	<div style="display: flex; justify-content: space-between;"> <div style="flex: 1;"> </div> <div style="flex: 1; text-align: right;"> BHARAT HEAVY ELECTRICALS LTD PROJECT ENGINEERING MANAGEMENT </div> </div> <p>This approval status shall be interpreted as laid down in the contractual obligation.</p> <table border="1" style="width: 100%; border-collapse: collapse;"> <tr> <td colspan="2" style="text-align: center;">APPROVAL CATEGORY AWARDED = I</td> </tr> <tr> <td colspan="2" style="text-align: center;">CAT I - Approved</td> </tr> <tr> <td colspan="2" style="text-align: center;">CAT II - Approved With Comments as Noted</td> </tr> <tr> <td colspan="2" style="text-align: center;">CAT III - Not Approved</td> </tr> <tr> <td style="width: 5%;">DEPARTMENT</td> <td style="width: 95%;">MECHANICAL AUXILIARY</td> </tr> <tr> <td>NAME</td> <td><u>GAURAV SINGH</u></td> </tr> </table>	APPROVAL CATEGORY AWARDED = I		CAT I - Approved		CAT II - Approved With Comments as Noted		CAT III - Not Approved		DEPARTMENT	MECHANICAL AUXILIARY	NAME	<u>GAURAV SINGH</u>
APPROVAL CATEGORY AWARDED = I															
CAT I - Approved															
CAT II - Approved With Comments as Noted															
CAT III - Not Approved															
DEPARTMENT	MECHANICAL AUXILIARY														
NAME	<u>GAURAV SINGH</u>														

**DM PLANT ALONG WITH POTABLE
WATER TREATMENT PLANT**

REVISION:5

**BASIC ENGINEERING PACKAGE
DOC NO: PE-V0-408-163-A003**

CLIENT :BHARAT HEAVY ELECTRICALS LIMITED
END CLIENT: GUJARAT STATE ELECTRICITY CORPORATION LTD
1 X 800 MW WANAKBORI SUPER CRITICAL THERMAL POWER
PROJECT
CONSULTANT: DEVELOPMENT CONSULTANTS PVT.LTD
DM PLANT ALONGWITH POTABLE WATER TREATMENT PLANT

10.	Bed Depth	Activated Carbon 1200, Support Gravel 300	mm
11.	Total Bed Depth Provided	1500	mm
12.	Free Board	75	%
13.	Height of Filter	2625	mm
14.	Height of Filter Provided	2700	mm
15.	Material of Construction	CSRL	

ALKALINE BRINE SOLUTION PREPARATION TANK

1.	Quantity	1	No
2.	Type	Vertical Cylindrical with flat bottom	
3.	Capacity	=5 Bed Volumes of SBA =(5*4.14) =20.7	
4.	Capacity provided with 20% margin	25	M3
5.	Dimensions(Rev-03)	3 m (Dia) X 3.6 m (Ht) + 0.3 m (FB) + 0.1m Dead depth	
6.	Material of Construction	CSRL	

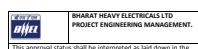
DILUTION WATER HEATER FOR ALKALI (HOT WATER TANK)

1.	Quantity	1	No
2.	Type	Vertical Cylindrical with dished ends. Heater-Immersion Coil	
3.	Bed Warming	=1 Bed Volume of SBA =(1*4140)(Rev-03) =4140	<div style="display: flex; justify-content: space-between;"> <div style="flex: 1;"> <p>BHARAT HEAVY ELECTRICALS LTD. PROJECT ENGINEERING MANAGEMENT.</p> <p>This approved status shall be interpreted as laid down in the contract and it shall not relieve the contractor from the contractual obligation.</p> <p>APPROVAL REPORT AWARDED - I CAT I - Approved CAT II - Approved With Comments as Noted CAT III - Approved With Comments CAT IV - Reference Drawing</p> <p>DEPARTMENT : MECHANICAL AUXILIARY NAME : GAJENDRA SINGH</p> </div> <div style="flex: 1; text-align: right;"> </div> </div>
4.	Hot water required for Alkali injection	=6570 (please refer attached Annexure - 1)(Rev-03)	Litres

**DM PLANT ALONG WITH POTABLE
WATER TREATMENT PLANT**

REVISION:5

**BASIC ENGINEERING PACKAGE
DOC NO: PE-V0-408-163-A003**


CLIENT :BHARAT HEAVY ELECTRICALS LIMITED
END CLIENT: GUJARAT STATE ELECTRICITY CORPORATION LTD
1 X 800 MW WANAKBORI SUPER CRITICAL THERMAL POWER
PROJECT
CONSULTANT: DEVELOPMENT CONSULTANTS PVT.LTD
DM PLANT ALONGWITH POTABLE WATER TREATMENT PLANT

5.	Capacity with 20% margin	=Bed Warming + Hot water required for slow rinse = $(4140+6570)*1.2$ =12852(Rev-03)	Litres
6.	Capacity with 20% margin	12.9(Rev-03)	m3
7.	Dimensions (Excluding Dish Length)	2.2 m (Dia) X 2.6 m (HOS)	
8.	Mass of water (m)	= Volume * Density = $12.9*1000$ =12900(Rev-01)	kg
9.	Specific Heat (Cp)	4.184	KJ/Kg/K
10.	Temperature increase required (dt)	30 (from 10 degree to 40 degree)	Degree Celsius or K
11.	Heating time	=6 =21600	hrs secs
12.	Heat required	= $mCpdt/t$ = $12900*4.184*30/21600$ = 74.5(Rev-03)	KW
13.	Heater KW with 95%	=74.5/0.95 = 79(Rev-03)	KW
14.	Capacity provided	= $2 X 50 \%$ = $2 X 40$ (Rev-03)	KW
15.	Material of Construction	SS316	

NEUTRALIZATION PIT

1.	Quantity	1 with two compartments	No
2.	Type	Underground and Rectangular in Cross-Section	
3.	Capacity with 20% margin for each compartment (for detailed calculation, Please refer Table A.2.1)	155(Rev-01)	m3

This approval status shall be informed as laid down in the
Contract and shall be confirmed by the concerned authority.

APPROVAL CATEGORY AWARDED - I

CAT-I - Approved

CAT-II - Approved With Comments as Noted

CAT-III - Not Approved

CAT-IV - Reference Drawing

NAME: GAENDER SINGH

DEPARTMENT: MECHANICAL AUXILIARY

**DM PLANT ALONG WITH POTABLE
WATER TREATMENT PLANT**

REVISION:5

**BASIC ENGINEERING PACKAGE
DOC NO: PE-V0-408-163-A003**

CLIENT :BHARAT HEAVY ELECTRICALS LIMITED
END CLIENT: GUJARAT STATE ELECTRICITY CORPORATION LTD
1 X 800 MW WANAKBORI SUPER CRITICAL THERMAL POWER
PROJECT
CONSULTANT: DEVELOPMENT CONSULTANTS PVT.LTD
DM PLANT ALONGWITH POTABLE WATER TREATMENT PLANT

4.	Dimensions	8 m (L) X 8 m (B) X 2.5 m (Ht) + 0.5 m (FB) + 0.1 m Dead Depth (Rev-02)
5.	Material of Construction	RCC
6.	Scope	By BHEL

NEUTRALIZED EFFLUENT DISPOSAL PUMP

1.	Quantity	4 (1W + 1S for each compartment)	Nos
2.	Volume of effluent to be disposed	155 (Rev-02)	m3
3.	Operating hours	24	hrs
4.	Capacity required	= 155/18 = 8.62	m3/hr
5.	Capacity provided with 20 % margin	40	m3/hr
6.	Head	31 (Rev-03) (please refer attached pressure drop calculation)	mWC
7.	Shut-off Head	53	mWC
8.	Efficiency	65	%
9.	Type	Horizontal Centrifugal Non Clog	
Material of Construction		 BHARAT HEAVY ELECTRICALS LTD PROJECT ENGINEERING MANAGEMENT The expressed intent shall be interpreted or laid down in the contract and it shall not release the contractor from the contractual obligations.	
1.	Casing	SS316	 CAT I: Approved with Comments as Noted CAT II: Not Approved CAT IV: Reference Drawing DEPARTMENT: MECHANICAL AUXILIARY APPROVED: GAENDRA SINGH
2.	Impeller	SS316	
3.	Rated Speed	1500	rpm

FILTER BACKWASH SUMP

1.	Quantity	1 with two compartments	No
2.	Type	Rectangular with flat bottom	
3.	Water required for DMF backwash and Rinse	81.78 (Rev-03)	m3
4.	Water required for one Potable Water Plant DMF	11.25	m3

DM PLANT ALONG WITH POTABLE WATER TREATMENT PLANT

REVISION:5

BASIC ENGINEERING PACKAGE
DOC NO: PE-V0-408-163-A003

CLIENT :BHARAT HEAVY ELECTRICALS LIMITED
END CLIENT: GUJARAT STATE ELECTRICITY CORPORATION LTD
1 X 800 MW WANAKBORI SUPER CRITICAL THERMAL POWER
PROJECT
CONSULTANT: DEVELOPMENT CONSULTANTS PVT.LTD
DM PLANT ALONGWITH POTABLE WATER TREATMENT PLANT

	backwash and Rinse		
5.	Water required for ACF backwash and Rinse	26.4(Rev-02)	m3
6.	Total backwash wash (Suitable to hold backwash waste generated from single backwash of one (1) number Dual Media Filter and activated carbon filter in a day)	119.43(Rev-03)	m3
7.	Capacity provided with 20% margin	144(Rev-03)	m3
8.	Material of Construction	RCC	
9.	Dimensions	7m (L) X 7 m (B) X 3 m (Ht) + 0.5 m (FB) + 0.1 m Dead Depth	
10.	Scope	By BHEL	

BACKWASH WASTE WATER DISPOSAL PUMP

1.	Quantity	2(1W + 1S)	Nos
2.	Capacity	75 (Rev-03)	m3/hr
3.	Head	35(Rev-04) (please refer attached pressure drop calculation)	mWC
4.	Shut-off Head	38(Rev-03)	mWC
5.	Efficiency	50	%
6.	Type	Vertical Centrifugal Non Clog	
	Material of Construction		<div style="display: flex; justify-content: space-between;"> <div style="flex: 1;"> <p>BHEL</p> <p>This approval status shall be interpreted as laid down in the contract and it shall not relieve the contractor from the contractual obligation.</p> <p>APPENDIX 1: Bidders AWARDED = I</p> <p>APPENDIX 2: Bidders Approved</p> <p>APPENDIX 3: Bidders Not Approved</p> <p>CAT I: Approved</p> <p>CAT II: Reference Drawing</p> <p>CAT III: Not Approved</p> <p>CAT IV: Reference Drawing</p> <p>DEPARTMENT: MECHANICAL AUXILIARY</p> <p>NAME: GAURAV SINGH</p> </div> <div style="flex: 1; text-align: right;"> </div> </div>
1.	Casing	Ni Hard CI as per ASTM 532	
2.	Impeller	Ni Hard CI as per ASTM 532	
3.	Rated Speed	1500	rpm

**DM PLANT ALONG WITH POTABLE
WATER TREATMENT PLANT**

REVISION:5

**BASIC ENGINEERING PACKAGE
DOC NO: PE-V0-408-163-A003**

CLIENT :BHARAT HEAVY ELECTRICALS LIMITED
END CLIENT: GUJARAT STATE ELECTRICITY CORPORATION LTD
1 X 800 MW WANAKBORI SUPER CRITICAL THERMAL POWER
PROJECT
CONSULTANT: DEVELOPMENT CONSULTANTS PVT.LTD
DM PLANT ALONGWITH POTABLE WATER TREATMENT PLANT

POTABLE WATER TREATMENT PLANT

DUAL MEDIA FILTER

1.	Quantity	2 (1W+1S)	Nos
2.	Type	Vertical Cylindrical with dished ends	
3.	Flow rate	15	m3/hr
4.	Design Surface Flow rate	10	M3/m2/hr
5.	Design Inlet Turbidity	15	NTU
6.	Design Outlet Turbidity	Not more than 1	NTU
7.	Area of Filter	1.5	M2
8.	Diameter	1.382	M
9.	Diameter provided	1.4	M
10.	Area of Filter provided	1.5386	m2
11.	Type of Filter Media	Bed of Graded Sand and Anthracite Supported over Graded Gravel.	
12.	Bed Depth	Anthracite 350, sand 750	mm
13.	Supporting media - Gravel	350	mm
14.	Total Bed Depth Provided	1450	mm
15.	Free Board	80	%
16.	Height of Filter	2610	mm
17.	Height of Filter Provided	2700	mm
18.	B/w Velocity	24	m/hr
19.	B/w Flow	37	m3/hr
20.	B/w Time	15	Min
21.	B/W Volume	10	m3
22.	Air Scoring Velocity	40	m/hr

BHEL	BHARAT HEAVY ELECTRICALS LTD. PROJECT ENGINEERING MANAGEMENT.
This approval status shall be interpreted as laid down in the standard procedure for awarding the concerned work.	
contractual obligation	
APPROVAL CATEGORY AWARDED = I	
CAT I - Approved	
CAT II - Approved With Comments as Noted	
CAT III - Not Approved	
LAST REVIEWED	REVIEWING
DEPARTMENT	MECHANICAL AUXILIARY
NAME	SAURABH SINGH

**DM PLANT ALONG WITH POTABLE
WATER TREATMENT PLANT**

**BASIC ENGINEERING PACKAGE
DOC NO: PE-V0-408-163-A003**

REVISION:5

CLIENT :BHARAT HEAVY ELECTRICALS LIMITED
END CLIENT: GUJARAT STATE ELECTRICITY CORPORATION LTD
1 X 800 MW WANAKBORI SUPER CRITICAL THERMAL POWER
PROJECT
CONSULTANT: DEVELOPMENT CONSULTANTS PVT.LTD
DM PLANT ALONGWITH POTABLE WATER TREATMENT PLANT

23.	Air Blower Flow rate	62	m3/hr
24.	Material of Construction	CSEP	

AIR BLOWER FOR DUAL MEDIA PRESSURE FILTERS

1.	Quantity	2 (1W + 1S)	Nos
2.	Blower Velocity	40	m/hr
3.	Blower Capacity	62	m3/hr
4.	Head	4000	mmWC
5.	Type	Rotary Twin Lobe Oil Free	
	Material of Construction		
1.	Casing	CI as per IS-210, Gr FG260	
2.	Lobe	CI as per IS-210, Gr, FG260	

SODIUM HYPOCHLORITE SOLUTION DOSING PUMP

1.	Quantity	2(1W+1S)	Nos
2.	Type of Pump	Metering Pump	
3.	Water Flowrate	15	m3/hr
4.	Dosage ppm	3	ppm
5.	Dosage Rate	0.009	Kg/hr
6.	Specific Gravity	1.1	Kg/l
7.	Dosage Rate at 100%	= Dosage Rate/Specific gravity = 0.009/1.1 = 0.0086	LPH
8.	Dosing Rate at10%	=Dosage Rate at 100%/10% concentration =0.0086/10% =0.086	LPH
9.	Pump Capacity Provided	0-4	LPH
	Material of Construction		

This approved status shall be interpreted as laid down in the contract and it shall not relieve the contractor from the responsibility of meeting the required quality standards.

CAT I - Approved
CAT II - Approved With Comments as Noted
CAT III - Not Approved
CAT IV - Reference Drawing

Approved by _____ Date _____

NAME: GAURAV SINGH

Signature:

**DM PLANT ALONG WITH POTABLE
WATER TREATMENT PLANT**

REVISION:5

**BASIC ENGINEERING PACKAGE
DOC NO: PE-V0-408-163-A003**

CLIENT :BHARAT HEAVY ELECTRICALS LIMITED
END CLIENT: GUJARAT STATE ELECTRICITY CORPORATION LTD
1 X 800 MW WANAKBORI SUPER CRITICAL THERMAL POWER
PROJECT
CONSULTANT: DEVELOPMENT CONSULTANTS PVT.LTD
DM PLANT ALONGWITH POTABLE WATER TREATMENT PLANT

1.	All wetted parts	CI to IS210 FG 260	
2.	Casing	CI as per IS-210, Gr. FG 260	
3.	Speed	1500	rpm

SODIUM HYPOCHLORITE DOSING TANK

1.	Quantity	1	No.
2.	Type	Vertical Cylindrical With flat bottom	
3.	Retention Time	30	Days
4.	Capacity required	=Dosing Rate at 10% * 30 *24 =0.086*30*24 =62	Ltrs
5.	Capacity Provided	100	Ltrs
6.	Dimensions	0.5 m (Dia) X 0.625 m (Ht) + 0.3 m (FB) + 0.1 m Dead Depth	
7.	Material of Construction	CSRL	

**DM PLANT ALONG WITH POTABLE
WATER TREATMENT PLANT**

REVISION:5

**BASIC ENGINEERING PACKAGE
DOC NO: PE-V0-408-163-A003**

CLIENT :BHARAT HEAVY ELECTRICALS LIMITED
END CLIENT: GUJARAT STATE ELECTRICITY CORPORATION LTD
1 X 800 MW WANAKBORI SUPER CRITICAL THERMAL POWER
PROJECT
CONSULTANT: DEVELOPMENT CONSULTANTS PVT.LTD
DM PLANT ALONGWITH POTABLE WATER TREATMENT PLANT

Chapter **7**

RESIN DATASHEETS

LIST OF RESIN

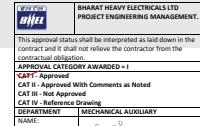
S.NO	RESIN NAME	RESIN MODEL
1	WEAK ACID CATION	Purolite® C104Plus
2	STRONG ACID CATION	Purolite® PFC100H
3	WEAK BASE ANION	Purolite® A100Plus
4	STRONG BASE ANION	Purolite® PPA500 Plus(Rev-03)
5	MB - CATION	Purolite® PFC100H
6	MB - ANION	Purolite® PPA500 Plus(Rev-03)

**DM PLANT ALONG WITH POTABLE
WATER TREATMENT PLANT**

REVISION:5

**BASIC ENGINEERING PACKAGE
DOC NO: PE-V0-408-163-A003**

Purolite® C104Plus


PRODUCT DATA SHEET

Porous Weak Acid Cation Exchange Resin

Purolite C104Plus is a premium grade polyacrylic weak acid cation exchanger. The functional groups of the carboxylic type give high chemical efficiency in many applications, especially for the removal of bicarbonate alkalinity in water treatment, showing good rates of exchange. Its major use is in the dealkalization and softening of waters and thereby the ionic load on the subsequent strong acid resin bed can be reduced. Because it has a lower density than the conventional strong acid resins, **Purolite C104Plus** is ideal for use in layered beds (**Doublite**) which can be economically regenerated by an upflow counter-current technique. This product has also been used to selectively recover transition metals from aqueous solutions. The resin is insoluble in acids, alkalies, and all common solvents. Its physical characteristics are outstanding, and often permit its use where a macroporous resin might otherwise be indicated. Hence **Purolite C104Plus** may be operated successfully at relatively high temperatures, e.g. in sugar treatment. However, the macroporous polyacrylic weak acid cation exchanger **Purolite C106** is generally recommended where it is required to work between the acid and the highly-swollen alkali salt form (for example in the treatment of ammoniacal condensate waters or high solids softening). Weakly acidic cation resins are increasingly being used in special applications including treatment of waste water streams in order to reduce environmental pollution.

Typical Physical and Chemical Characteristics

Application	Dealkalization, Deionization; Softening - High Capacity
Polymer Structure	Porous crosslinked polyacrylic
Appearance	Spherical beads
Functional Group	Carboxylic Acid
Ionic Form as Shipped	H ⁺
Total Capacity (min.)	4.5 eq/l (98.3 Kgr/ft ³ (H ⁺ form))
Moisture Retention	45 - 55 % (H ⁺ form)
Particle Size Range	300 - 1600 µm
<300 µm (max.)	1 %
Reversible Swelling, H ⁺ → Ca ²⁺ (max.)	20 %
Reversible Swelling, H ⁺ → Ca ²⁺ (operating)	7 % (approx.)
Reversible Swelling, H ⁺ → Na ⁺ (max.)	70 %
Specific Gravity	1.19
Shipping Weight (approx.)	740 - 780 g/l (46.3 - 48.8 lb/ft ³)
Temperature Limit	120°C (250°F)

Americas T +1 610.668.9090 F +1 484.384.2751 americas@purolite.com	Europe T +44 1443 229334 F +44 1443 227073 europe@purolite.com	Asia Pacific T +86 571 876 31382 F +86 571 876 31385 asiapacific@purolite.com
--	--	---

Purofine® PFC100H

PRODUCT DATA SHEET

Gel Strong Acid Cation Resin - Hydrogen Form, Uniform Particle Size

Principal Applications

- Industrial demineralization

Advantages

- Efficient regeneration
- Efficient separation
- Good physical and chemical stability
- High operating capacity
- Lower pressure drop versus standard resin
- Lower rinse volumes
- Superior kinetic performance

Systems

- Coflow regenerated systems
- Counterflow regenerated systems

Typical Physical and Chemical Characteristics

Application	Demineralization - Uniform Beads
Polymer Structure	Gel polystyrene crosslinked with DVB
Appearance	Amber, clear spherical beads
Functional Group	Sulfonic acid
Ionic Form as Shipped	H ⁺
Total Capacity (min.)	2.0 eq/l (43.7 Kgr/ft ³) (Na ⁺ form)
Moisture Retention	51 - 55 % (H ⁺ form)
Mean Diameter	570 ± 50 µm
Uniformity Coefficient (max.)	1.1 - 1.2
Reversible Swelling, Na ⁺ → H ⁺ (max.)	8 %
Specific Gravity	1.20 (H ⁺ form)
Shipping Weight (approx.)	745 - 770 g/l (46.6 - 48.1 lb/ft ³)
Temperature Limit	120°C (250°F)

Americas
T +1 610.668.9090
F +1 484.384.2751
americas@purolite.com

Europe
T +44 1443 229334
F +44 1443 227073
europe@purolite.com

Asia Pacific
T +86 571 876 31382
F +86 571 876 31385
asiapacific@purolite.com

Purolite® A100Plus

PRODUCT DATA SHEET

Macroporous Weak Base Anion Exchange Resin

Purolite A100Plus is a macroporous polystyrenic weak base anion resin having tertiary amine functionality. It is designed to exhibit high operating capacity in removing strong acids formed after decationizing water through a strong acid cation resin like Purolite C100H. Because of its special porosity characteristics **Purolite A100Plus** shows excellent properties for removal of naturally occurring organic species from waters along with superior elution efficiency of the organics during regeneration. **Purolite A100Plus** also shows excellent resistance to osmotic shock as well as being physically resistant to mechanical breakage. Regeneration with caustic soda requires only 125% of the stoichiometric equivalent when related to the ionic loading on the resin at the exhaustion point. The rinse characteristics are good and minimum volumes of decationized water are required to rinse down to a conductivity of 50 $\mu\text{S}/\text{cm}$.

Typical Physical and Chemical Characteristics

Application	Demineralization - Resistant to Organic Fouling
Polymer Structure	Macroporous Polystrene Crosslinked with Divinylbenzene
Appearance	Spherical beads
Functional Group	Tertiary Amine
Ionic Form as Shipped	Free Base
Total Capacity (min.)	1.3 eq/l (28.4 Kgr/ft ³) (Free Base form)
Moisture Retention	53 - 62 % (Cl ⁻ form)
Particle Size Range	300 - 1200 μm
<300 μm (max.)	1 %
Uniformity Coefficient (max.)	1.7
Reversible Swelling, FB \rightarrow Cl ⁻ (max.)	25 %
Specific Gravity	1.04
Shipping Weight (approx.)	655 - 685 g/l (40.9 - 42.8 lb/ft ³)
Temp Limit, Cl ⁻ Form	100°C (212°F)
Temp Limit, Free Base Form	60°C (140°F)

Americas	Europe	Asia Pacific
T +1 610.668.9090 F +1 484.384.2751 americas@purolite.com	T +44 1443 229334 F +44 1443 227073 europe@purolite.com	T +86 571 876 31382 F +86 571 876 31385 asiapacific@purolite.com

Puropack® PPA500Plus

PRODUCT DATA SHEET

Macroporous Type I Strong Base Anion Exchange Resin

Puropack PPA500Plus is a specially produced, premium narrow size grading, macroporous type-I strong base anion exchange resin, ideal for use in packed beds. Its macroporous structure offers excellent resistance to osmotic and physical shock, as well as a good reversible sorptive capacity for complex organic materials, such as the fulvic and humic acids which occur in many surface water supplies. It is one of a range of **Puropack** products manufactured for use in modern day water treatment applications using packed beds. **Puropack PPA500Plus** is especially recommended for use in all counterflow demineralization systems, including the **Puropack** packed bed system. It has a specially tailored size grading which provides for economical regeneration by counterflow techniques. **Puropack** is a maximum performance packed bed system which provides a combination of superior engineering principles and improved resins that together optimize water treatment plant performance. For more information please refer to the **Puropack Manual** or your local **Purolite** Sales Office.

Typical Physical and Chemical Characteristics

Application	Demineralization - Uniformly Sized Packed Bed Grading
Polymer Structure	Macroporous polystyrene crosslinked with divinylbenzene
Appearance	Spherical beads
Functional Group	Type I Quaternary Ammonium
Ionic Form as Shipped	Cl ⁻
Total Capacity (min.)	1.15 eq/l (25.1 Kgr/ft ³) (Cl ⁻ form)
Moisture Retention	57 - 63 % (Cl ⁻ form)
Mean Size Typical	750 ± 100 µm
Uniformity Coefficient (max.)	1.2-1.4
Reversible Swelling, Cl ⁻ → OH ⁻ (max.)	20 %
Specific Gravity	1.08
Shipping Weight (approx.)	670 - 700 g/l (41.8 - 43.8 lb/ft ³)
Temp Limit, Cl ⁻ Form	100°C (212°F)
Temp Limit, OH ⁻ Form	65°C (150°F)

	BHARTI HEAVY ELECTRICALS LTD PROJECT ENGINEERING MANAGEMENT
This approval status shall be interpreted as laid down in the contract and it shall not relieve the contractor from the contractual obligation.	
APPROVAL NUMBER AWARDED = I	
CAT-IV: Approved	
CAT-II - Approved With Comments as Noted	
CAT-III - Approved With Comments as Noted	
CAT-IV - Reference Drawing	
DEPARTMENT	MECHANICAL AUXILIARY
NAME	GAENDERNA SINGH

Americas	Europe	Asia Pacific
T +1 610.668.9090 F +1 484.384.2751 americas@purolite.com	T +44 1443 229334 F +44 1443 227073 europe@purolite.com	T +86 571 876 31382 F +86 571 876 31385 asiapacific@purolite.com

CLIENT :BHARAT HEAVY ELECTRICALS LIMITED
END CLIENT: GUJARAT STATE ELECTRICITY CORPORATION LTD
1 X 800 MW WANAKBORI SUPER CRITICAL THERMAL POWER
PROJECT
CONSULTANT: DEVELOPMENT CONSULTANTS PVT.LTD
DM PLANT ALONGWITH POTABLE WATER TREATMENT PLANT

Chapter
8

PRESSURE DROP CALCUALTIONS

LIST OF PUMPS

1. DM PLANT FEED PUMPS
2. DG WATER TRANSFER PUMPS
3. REGENERATION WATER TRANSFER PUMPS
4. BACKWASH WASTE WATER DISPOSAL PUMPS
5. NEUTRALISED EFFULENT DISPOSAL PUMPS
6. AIR BLOWER FOR DMF
7. AIR BLOWER FOR DEGASSER
8. AIR BLOWER FOR MB AND NPIT
9. AIR BLOWER FOR DMF POTABLE

	BHARAT HEAVY ELECTRICALS LTD PROJECT ENGINEERING MANAGEMENT.
This approved status shall be interpreted as laid down in the contract and it shall not relieve the contractor from the responsibility of meeting the required standards.	
APPROVAL CATEGORY AWARDED - I	
CAT I - Approved	
CAT II - Approved with Comments as Noted	
CAT III - Not Approved	
CAT IV - Reference Drawing	
DEPARTMENT	MECHANICAL AUXILIARY
NAME	GAURENDRA SINGH

**DM PLANT ALONG WITH POTABLE
WATER TREATMENT PLANT**

REVISION:5

**BASIC ENGINEERING PACKAGE
DOC NO: PE-V0-408-163-A003**

END USER:	GSECL, 1 X 800 MW WANAKBORI STPP	CONTRACTOR:	AQUADESIGNS INDIA PVT.LTD
CLIENT :	M/S. BHEL	CLIENT :	M/S. BHEL - WANAKBORI
Doc. No	PE-V0-408-163-A003	Doc. Name	Pressure drop calculation

PROJECT : DM PLANT PACKAGE										TITLE : HYDRAULIC CALCULATION FOR DM FEED PUMP - Capacity - 120 m3/hr @ 50 mWC head																					
FORMULA'S										* $V = 0.849 C R^{0.63} S^{0.54}$ Entry Loss = $0.5 V^2 / 2g$, Exit Loss = $V^2 / 2g$ & Fitting Losses = $K \times V^2 / 2g \times \text{No. of fittings}$.																					
PIPE			Flow Q		Pipe Size		Hydraulic		Area		Velocity		Length		MOC		Pipe Coeff.		Slope S		Pipe	Entry &	Head loss								
FROM	TO	NB mm	m ³ /hr	m ³ /sec	ID mm	mean dep. R	m ²	m/sec V	mts L	MOC	C	*	1 in	Loss SxL	Exit loss	m															
DM feed pump suction header - Common	DM feed pump suction header - Individual	200	120.0	0.0333	200	0.0500	0.031	1.061	3.00	CS	100	0.010	102	0.0296	0.0000	0.0296															
DM feed pump suction header - Individual	Pump suction	200	120.0	0.0333	200	0.0500	0.031	1.061	1.50	CS	100	0.010	102	0.0148	0.0000	0.0148															
Pump Discharge	Pump Discharge Header	150	120.0	0.0333	150	0.0375	0.018	1.886	1.50	CS	100	0.040	25	0.0600	0.0000	0.0600															
Pump Discharge Header	To DMF (Rev-02)	200	240.0	0.0667	200	0.0500	0.031	2.122	200.00	CS	100	0.036	28	7.1114	0.0000	7.1114															
FITTING LOSSES			Fittings K - values are taken from Chemical Engineers Hand Book - By Robert H. Perry /Cecil H Chilton																												
PIPE			ID	Bell mouth	Bend				Tee		Valve				Exp / Reducer	Y/ strainer	Miscellaneous	welding loss													
FROM	TO	NB mm			0.10	0.10	0.20	0.35	0.45	1.50	0.40	0.17	1.00	0.40	0.17	6.00	2.60	0.24	9.00	0.30	2.00	2.00	15.0	0.60	3.00	0.90	0.05				
DM feed pump suction header - Common	DM feed pump suction header - Individual	200	200.00								1																	0.0574			
DM feed pump suction header - Individual	Pump suction	200	200.00															1										0.0138			
Pump Discharge	Pump Discharge Header	150	150.00						1										1									0.4878			
Pump Discharge Header	To DMF (Rev-02)	200	200.00						2												2	41.2						1.0925			
																				Frictional loss (Calculated)				8.867							
																				Suction Head				0.000				-1.000			
																				MAXIMUM HEAD LOSS IN THE DMF, ACF is 5 mWC in DMF and 7 mWC in ACF				12.0							
																				MAXIMUM HEAD LOSS IN THE WAC (pl refer DM plant design software projection)				7.0							
																				MAXIMUM HEAD LOSS IN THE SAC (pl refer DM plant design software projection)				5.5							
																				Maximum Pipe Ht (static Head)				12.0							
																				Total Head in M (Required)				44.367							
																				TOTAL HEAD PROVIDED in M				50							
																				Margin Available in % (Rev-02)				12%							

END USER:	GSECL, 1 X 800 MW WANAKBORI STPP	CONTRACTOR:	AQUADESIGNS INDIA PVT.LTD
CLIENT :	M/S. BHEL	CLIENT :	M/S. BHEL - WANAKBORI
Doc. No	PE-V0-408-163-A003	Doc. Name	Pressure drop calculation

PROJECT : DM PLANT PACKAGE

TITLE : HYDRAULIC CALCULATION FOR
DG WATER TRANSFER PUMPS - Capacity - 120 m³/hr @ 45 mWC head (Rev-02)

FORMULA'S

* $V = 0.849 C R^{0.63} S^{0.54}$, Entry Loss = $0.5 V^2 / 2q$, Exit Loss = $V^2 / 2q$ & Fitting Losses = $K \times V^2 / 2q \times \text{No. of fittings}$

PIPE		Flow Q	Pipe Size ID mm	Hydraulic mean dep. R	Area m ²	Velocity m/sec V	Length mts L	MOC	Pipe Coeff.	Slope S		Pipe Loss SxL	Entry & Exit loss	Head loss m		
FROM	TO	NB mm							C	*	1 in					
DG water transfer pump suction header - Common	DG water transfer pump suction header - Individual	200	120.0	0.0333	194	0.0485	0.030	1.128	3.00	CSRL	120	0.008	123	0.0245	0.0000	0.0245
DG water transfer pump suction header - Individual	Pump suction	200	120.0	0.0333	194	0.0485	0.030	1.128	1.50	CSRL	120	0.008	123	0.0122	0.0000	0.0122
Pump Discharge	Pump Discharge Header	150	120.0	0.0333	144	0.0360	0.016	2.047	1.50	CSRL	120	0.035	29	0.0522	0.0000	0.0522
DG Tank	To DMWST (Rev-02)	200	120.0	0.0333	194	0.0485	0.030	1.128	100.00	CSRL	120	0.008	123	0.8152	0.0000	0.8152

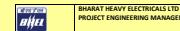
FITTING LOSSES

Fittings K - values are taken from Chemical Engineers Hand Book - By Robert H. Perry /Cecil H Chilton

Frictional loss (Calculated)			2.330
Suction Head	0.000	1.00	-0.500
MAXIMUM HEAD LOSS IN THE WBA (pl refer DM plant design software projection)			6.0
MAXIMUM HEAD LOSS IN THE SBA (pl refer DM plant design software projection)			6.0
MAXIMUM HEAD LOSS IN THE MB (pl refer DM plant design software projection)			7.0
Maximum Pipe Ht (static Head)			12.0
Total Head in M (Required)			32.830
TOTAL HEAD PROVIDED in M			45
Margin Available in % (Rev-02)			36%

END USER:	GSECL, 1 X 800 MW WANAKBORI STPP			CONTRACTOR:	AQUADESIGNS INDIA PVT.LTD		
CLIENT :	M/S. BHEL			CLIENT :	M/S. BHEL - WANAKBORI		
Doc. No	PE-V0-408-163-A003			Doc. Name	Pressure drop calculation		

PROJECT : DM PLANT PACKAGE										TITLE : HYDRAULIC CALCULATION FOR REGENERATION WATER TRANSFER PUMPS - Capacity - 20 m3/hr @ 30 mWC head (Rev-02)																																																																																																																																																																																	
FORMULA'S $* V = 0.849 C R^{0.63} S^{0.54}$, Entry Loss = $0.5 V^2 / 2g$, Exit Loss = $V^2 / 2g$ & Fitting Losses = $K \times V^2 / 2g \times \text{No. of fittings}$.																																																																																																																																																																																											
<table border="1"> <thead> <tr> <th colspan="3">PIPE</th> <th colspan="2">Flow Q</th> <th>Pipe Size</th> <th>Hydraulic</th> <th>Area</th> <th>Velocity</th> <th>Length</th> <th>MOC</th> <th>Pipe Coeff.</th> <th colspan="2">Slope S</th> <th>Pipe</th> <th>Entry &</th> <th>Head loss</th> </tr> <tr> <th>FROM</th> <th>TO</th> <th>NB mm</th> <th>m³/hr</th> <th>m³/sec</th> <th>ID mm</th> <th>mean dep. R</th> <th>m²</th> <th>m/sec V</th> <th>mts L</th> <th></th> <th>C</th> <th>*</th> <th>1 in</th> <th>Loss SxL</th> <th>Exit loss</th> <th>m</th> </tr> </thead> <tbody> <tr> <td>REGENERATION WATER TRANSFER pump suction header - Common</td> <td>REGENERATION WATER TRANSFER pump suction header - Individual</td> <td>100</td> <td>20.0</td> <td>0.0056</td> <td>100</td> <td>0.0250</td> <td>0.008</td> <td>0.707</td> <td>3.00</td> <td>CSRL</td> <td>120</td> <td>0.007</td> <td>134</td> <td>0.0223</td> <td>0.0000</td> <td>0.0223</td> </tr> <tr> <td>REGENERATION WATER TRANSFER pump suction header - Individual</td> <td>Pump suction</td> <td>100</td> <td>20.0</td> <td>0.0056</td> <td>100</td> <td>0.0250</td> <td>0.008</td> <td>0.707</td> <td>1.50</td> <td>CSRL</td> <td>120</td> <td>0.007</td> <td>134</td> <td>0.0112</td> <td>0.0000</td> <td>0.0112</td> </tr> <tr> <td>Pump Discharge</td> <td>Pump Discharge Header</td> <td>80</td> <td>20.0</td> <td>0.0056</td> <td>80</td> <td>0.0200</td> <td>0.005</td> <td>1.105</td> <td>1.50</td> <td>CSRL</td> <td>120</td> <td>0.022</td> <td>45</td> <td>0.0331</td> <td>0.0000</td> <td>0.0331</td> </tr> <tr> <td>MB</td> <td>To DMWST</td> <td>80</td> <td>20.0</td> <td>0.0056</td> <td>80</td> <td>0.0200</td> <td>0.005</td> <td>1.105</td> <td>100.00</td> <td>CSRL</td> <td>120</td> <td>0.022</td> <td>45</td> <td>2.2076</td> <td>0.0000</td> <td>2.2076</td> </tr> </tbody> </table>																			PIPE			Flow Q		Pipe Size	Hydraulic	Area	Velocity	Length	MOC	Pipe Coeff.	Slope S		Pipe	Entry &	Head loss	FROM	TO	NB mm	m ³ /hr	m ³ /sec	ID mm	mean dep. R	m ²	m/sec V	mts L		C	*	1 in	Loss SxL	Exit loss	m	REGENERATION WATER TRANSFER pump suction header - Common	REGENERATION WATER TRANSFER pump suction header - Individual	100	20.0	0.0056	100	0.0250	0.008	0.707	3.00	CSRL	120	0.007	134	0.0223	0.0000	0.0223	REGENERATION WATER TRANSFER pump suction header - Individual	Pump suction	100	20.0	0.0056	100	0.0250	0.008	0.707	1.50	CSRL	120	0.007	134	0.0112	0.0000	0.0112	Pump Discharge	Pump Discharge Header	80	20.0	0.0056	80	0.0200	0.005	1.105	1.50	CSRL	120	0.022	45	0.0331	0.0000	0.0331	MB	To DMWST	80	20.0	0.0056	80	0.0200	0.005	1.105	100.00	CSRL	120	0.022	45	2.2076	0.0000	2.2076																																																																			
PIPE			Flow Q		Pipe Size	Hydraulic	Area	Velocity	Length	MOC	Pipe Coeff.	Slope S		Pipe	Entry &	Head loss																																																																																																																																																																											
FROM	TO	NB mm	m ³ /hr	m ³ /sec	ID mm	mean dep. R	m ²	m/sec V	mts L		C	*	1 in	Loss SxL	Exit loss	m																																																																																																																																																																											
REGENERATION WATER TRANSFER pump suction header - Common	REGENERATION WATER TRANSFER pump suction header - Individual	100	20.0	0.0056	100	0.0250	0.008	0.707	3.00	CSRL	120	0.007	134	0.0223	0.0000	0.0223																																																																																																																																																																											
REGENERATION WATER TRANSFER pump suction header - Individual	Pump suction	100	20.0	0.0056	100	0.0250	0.008	0.707	1.50	CSRL	120	0.007	134	0.0112	0.0000	0.0112																																																																																																																																																																											
Pump Discharge	Pump Discharge Header	80	20.0	0.0056	80	0.0200	0.005	1.105	1.50	CSRL	120	0.022	45	0.0331	0.0000	0.0331																																																																																																																																																																											
MB	To DMWST	80	20.0	0.0056	80	0.0200	0.005	1.105	100.00	CSRL	120	0.022	45	2.2076	0.0000	2.2076																																																																																																																																																																											
<table border="1"> <thead> <tr> <th colspan="3">FITTING LOSSES</th> <th colspan="17">Fittings K - values are taken from Chemical Engineers Hand Book - By Robert H. Perry /Cecil H Chilton</th> </tr> <tr> <th colspan="3">PIPE</th> <th rowspan="2">ID</th> <th rowspan="2">Bell mouth</th> <th colspan="6">Bend</th> <th colspan="2">Tee</th> <th colspan="6">Valve</th> <th rowspan="2">Exp / Reducer</th> <th rowspan="2">Y/ strainer</th> <th rowspan="2">Miscellaneous</th> <th rowspan="2">welding loss</th> </tr> <tr> <th>FROM</th> <th>TO</th> <th>NB mm</th> <th>0.10</th> <th>0.10</th> <th>0.20</th> <th>0.35</th> <th>0.45</th> <th>1.50</th> <th>0.40</th> <th>0.17</th> <th>1.00</th> <th>0.40</th> <th>0.17</th> <th>6.00</th> <th>2.60</th> <th>0.24</th> <th>9.00</th> <th>0.30</th> <th>2.00</th> <th>15.0</th> <th>0.60</th> <th>3.00</th> <th>0.90</th> <th>0.05</th> </tr> </thead> <tbody> <tr> <td>REGENERATION WATER TRANSFER pump suction header - Common</td> <td>REGENERATION WATER TRANSFER pump suction header - Individual</td> <td>100</td> <td>100.00</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1</td> <td></td> <td>0.0255</td> </tr> <tr> <td>REGENERATION WATER TRANSFER pump suction header - Individual</td> <td>Pump suction</td> <td>100</td> <td>100.00</td> <td></td> <td>0.0061</td> </tr> <tr> <td>Pump Discharge</td> <td>Pump Discharge Header</td> <td>80</td> <td>80.00</td> <td></td> <td></td> <td></td> <td></td> <td>1</td> <td></td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td>0.1675</td> </tr> <tr> <td>MB</td> <td>To DMWST</td> <td>80</td> <td>80.00</td> <td></td> <td></td> <td></td> <td></td> <td>2</td> <td></td> <td></td> <td>2</td> <td></td> <td>0.2926</td> </tr> </tbody> </table>																				FITTING LOSSES			Fittings K - values are taken from Chemical Engineers Hand Book - By Robert H. Perry /Cecil H Chilton																	PIPE			ID	Bell mouth	Bend						Tee		Valve						Exp / Reducer	Y/ strainer	Miscellaneous	welding loss	FROM	TO	NB mm	0.10	0.10	0.20	0.35	0.45	1.50	0.40	0.17	1.00	0.40	0.17	6.00	2.60	0.24	9.00	0.30	2.00	15.0	0.60	3.00	0.90	0.05	REGENERATION WATER TRANSFER pump suction header - Common	REGENERATION WATER TRANSFER pump suction header - Individual	100	100.00								1													0.0255	REGENERATION WATER TRANSFER pump suction header - Individual	Pump suction	100	100.00																					0.0061	Pump Discharge	Pump Discharge Header	80	80.00					1											1					0.1675	MB	To DMWST	80	80.00					2			2													0.2926
FITTING LOSSES			Fittings K - values are taken from Chemical Engineers Hand Book - By Robert H. Perry /Cecil H Chilton																																																																																																																																																																																								
PIPE			ID	Bell mouth	Bend						Tee		Valve						Exp / Reducer	Y/ strainer	Miscellaneous	welding loss																																																																																																																																																																					
FROM	TO	NB mm			0.10	0.10	0.20	0.35	0.45	1.50	0.40	0.17	1.00	0.40	0.17	6.00	2.60	0.24					9.00	0.30	2.00	15.0	0.60	3.00	0.90	0.05																																																																																																																																																													
REGENERATION WATER TRANSFER pump suction header - Common	REGENERATION WATER TRANSFER pump suction header - Individual	100	100.00								1													0.0255																																																																																																																																																																			
REGENERATION WATER TRANSFER pump suction header - Individual	Pump suction	100	100.00																					0.0061																																																																																																																																																																			
Pump Discharge	Pump Discharge Header	80	80.00					1											1					0.1675																																																																																																																																																																			
MB	To DMWST	80	80.00					2			2													0.2926																																																																																																																																																																			
<table border="1"> <thead> <tr> <th colspan="20">Frictional loss (Calculated)</th> </tr> <tr> <th colspan="16">Suction Head</th> <th>0.000</th> <th>1.00</th> </tr> </thead> <tbody> <tr> <td colspan="16">MAXIMUM HEAD LOSS IN THE EJECTOR</td> <td>5.0</td> </tr> <tr> <td colspan="16">MAXIMUM HEAD LOSS IN THE VESSEL (MB vessel has maximum, pls refer design software projection)</td> <td>7.0</td> </tr> <tr> <td colspan="16">Maximum Pipe Ht (static Head)</td> <td>12.0</td> </tr> <tr> <td colspan="16">Total Head in M (Required)</td> <td>25.766</td> </tr> <tr> <td colspan="16">TOTAL HEAD PROVIDED in M</td> <td>30</td> </tr> <tr> <td colspan="16">Margin Available in %</td> <td>15%</td> </tr> </tbody> </table>																				Frictional loss (Calculated)																				Suction Head																0.000	1.00	MAXIMUM HEAD LOSS IN THE EJECTOR																5.0	MAXIMUM HEAD LOSS IN THE VESSEL (MB vessel has maximum, pls refer design software projection)																7.0	Maximum Pipe Ht (static Head)																12.0	Total Head in M (Required)																25.766	TOTAL HEAD PROVIDED in M																30	Margin Available in %																15%																												
Frictional loss (Calculated)																																																																																																																																																																																											
Suction Head																0.000	1.00																																																																																																																																																																										
MAXIMUM HEAD LOSS IN THE EJECTOR																5.0																																																																																																																																																																											
MAXIMUM HEAD LOSS IN THE VESSEL (MB vessel has maximum, pls refer design software projection)																7.0																																																																																																																																																																											
Maximum Pipe Ht (static Head)																12.0																																																																																																																																																																											
Total Head in M (Required)																25.766																																																																																																																																																																											
TOTAL HEAD PROVIDED in M																30																																																																																																																																																																											
Margin Available in %																15%																																																																																																																																																																											



END USER:	GSECL, 1 X 800 MW WANAKBORI STPP			CONTRACTOR:	AQUADESIGNS INDIA PVT.LTD		
CLIENT :	M/S. BHEL			CLIENT :	M/S. BHEL - WANAKBORI		
Doc. No	PE-V0-408-163-A003			Doc. Name	Pressure drop calculation		

PROJECT : DM PLANT PACKAGE								TITLE : HYDRAULIC CALCULATION FOR BACKWASH WASTE WATER DISPOSAL PUMPS - Capacity - 75 m3/hr @ 35 mWC head (Rev-04)																		
PIPE			Flow Q		Pipe Size		Hydraulic		Area		Velocity		Length		MOC		Pipe Coeff.		Slope S		Pipe	Entry &	Head loss			
FROM	TO	NB mm	m ³ /hr	m ³ /sec	ID mm	mean dep. R	m ²	m/sec V	mts L	mts L	C	*	1 in	Loss SxL	Exit loss	m										
Backwash waste water disposal pump suction header - Common	Backwash waste water disposal pump suction header - Individual	125	75.0	0.0208	125	0.0313	0.012	1.698	3.00	CS	100	0.041	25	0.1221	0.0000	0.1221										
Backwash waste water disposal pump suction header - Individual	Pump suction	125	75.0	0.0208	125	0.0313	0.012	1.698	1.50	CS	100	0.041	25	0.0611	0.0000	0.0611										
Pump Discharge	Pump Discharge Header	125	75.0	0.0208	125	0.0313	0.012	1.698	1.50	CS	100	0.041	25	0.0611	0.0000	0.0611										
Sump	To Stilling Chamber of PT Plant	125	75.0	0.0208	125	0.0313	0.012	1.698	350.00	CS	100	0.041	25	14.2453	0.0000	14.2453										
FITTING LOSSES			Fittings K - values are taken from Chemical Engineers Hand Book - By Robert H. Perry /Cecil H Chilton																							
PIPE			ID	Bell mouth	11 1/4°	22 1/2°	45°	90°	180°	Square	Miter	Branch	Main	Gate	Globe	Diaph.	Butter	Plug	Ball	Angle	Check	Foot	Exp / Reducer	Y/ strainer	Miscellaneous	welding loss
FROM	TO	NB mm	K val	0.10	0.10	0.20	0.35	0.45	1.50	0.40	0.17	1.00	0.40	0.17	6.00	2.60	0.24	9.00	0.30	2.00	2.00	15.0	0.60	3.00	0.90	0.05
Backwash waste water disposal pump suction header - Common	Backwash waste water disposal pump su	125	125.00									1													0.1469	
Backwash waste water disposal pump suction header - Individual	Pump suction	125	125.00														1								0.0353	
Pump Discharge	Pump Discharge Header	125	125.00					1										1							0.3951	
Sump	To Stilling Chamber of PT Plant	125	125.00						2				2								2	71.2			1.2133	
BHARAT HEAVY ELECTRICALS LTD PROJECT ENGINEERING MANAGEMENT. This approval status shall be interpreted as laid down in the Contractual obligations. It does not relieve the contractor from the Contractual obligations. APPROVAL CATEGORY AWARDED : I CAT I : Approved CAT II : Approved With Comments as Noted CAT III : Not Approved CAT IV : Not Recommended DEPARTMENT : MECHANICAL AUXILIARY NAME: <i>Sandeepa Singh</i> <i>Signature</i> SANDEEPA SINGH															Frictional loss (Calculated)						16.280					
Sump Depth															0.000	3.00	3.000									
Maximum Pipe Ht (static Head)															12.0											
Total Head in M (Required)															31.280											
TOTAL HEAD PROVIDED in M															35 (Rev-04)											
Margin Available in %															10%											

END USER:	GSECL, 1 X 800 MW WANAKBORI STPP	CONTRACTOR:	AQUADESIGNS INDIA PVT.LTD
CLIENT :	M/S. BHEL	CLIENT :	M/S. BHEL - WANAKBORI
Doc. No	PE-V0-408-163-A003	Doc. Name	Pressure drop calculation

END USER:	GSECL, 1 X 800 MW WANAKBORI STPP	CONTRACTOR:	AQUADESIGNS INDIA PVT.LTD
CLIENT :	M/S. BHEL	CLIENT :	M/S. BHEL - WANAKBORI
Doc. No	PE-V0-408-163-A003	Doc. Name	Pressure drop calculation

PROJECT : DM PLANT PACKAGE										TITLE : HYDRAULIC CALCULATION FOR Air blower for DMF - Capacity - 480 m ³ /hr @ 4000 mmWC head									
FORMULA'S										Head loss (P/L) = $pv^2u/2d$, & Fitting Losses = $K \times \rho V^2/2g \times \text{No. of fittings}$.									
PIPE			Flow Q		Pipe Size ID mm	Hydraulic mean dep. R		Area m ²	Velocity m/sec V	Length mts L	MOC	friction loss coefficient		P/L		Pipe Loss P/L*L	Head loss mm		
FROM	TO	NB mm	m ³ /hr	m ³ /sec		mean dep. R	m ²					u	N/m ²	m					
Air blower for DMF suction header - Common	Air blower for DMF suction header - Individual	NA																	
Air blower for DMF suction header - Individual	Blower suction																		
Blower Discharge	Blower Discharge Header	100	480.0	0.1333	100	0.1000	0.008		16.977	1.50	GI	0.02	34.584	0.003	0.0052	5.1876			
Blower Discharge Header	To DMF	100	480.0	0.1333	100	0.1000	0.008		16.977	30.00	GI	0.02	34.584	0.003	0.1038	103.7529			
FITTING LOSSES			Fittings K - values are taken from Chemical Engineers Hand Book - By Robert H. Perry /Cecil H Chilton																
PIPE			ID	Bell mouth	Bend				Tee		Valve				Exp / Reducer	Y/ strainer	Miscellaneous	welding loss	
FROM	TO	NB mm			11 1/4°	22 1/2°	45°	90°	Square	Miter	Branch	Main	Gate	Globe					
Air blower for DMF suction header - Common	Air blower for DMF suction header - Indiv	NA	0.10	0.10	0.20	0.35	0.45	1.50	0.40	0.17	1.00	0.40	0.17	6.00	2.60	0.24	9.00	0.30	
Air blower for DMF suction header - Individual	Blower suction															1			
Blower Discharge	Blower Discharge Header	100	100.00				1									1		1	
Blower Discharge Header	To DMF	100	100.00				2										2		8.2847
Frictional loss (Calculated)																	121.967		
Static head = 12 m above ground level = $12 \times \text{density of air} \times 1000 / 1000 \text{ mm}$																	14.4		
Maximum head loss in DMF																	2500.0		
Total Head in M (Required)																	2636.367		
TOTAL HEAD PROVIDED in M																	4000		
Margin Available in %																	52%		
 This approval status shall be interpreted as laid down in the contractual obligation and shall not relieve the contractor from the contractual obligation. APPROVAL CATEGORY AWARDED = I CAT I - Approved CAT II - Approved With Comments as Noted CAT III - Not Approved CAT IV - Not Approved DEPARTMENT MECHANICAL AUXILIARY NAME GAURAV SINGH																			

END USER:	GSECL, 1 X 800 MW WANAKBORI STPP	CONTRACTOR:	AQUADESIGNS INDIA PVT.LTD
CLIENT :	M/S. BHEL	CLIENT :	M/S. BHEL - WANAKBORI
Doc. No	PE-V0-408-163-A003	Doc. Name	Pressure drop calculation

PROJECT : DM PLANT PACKAGE										TITLE : HYDRAULIC CALCULATION FOR Air blower for Degasser - Capacity - 3150 m3/hr @ 100 mmWC head (Rev-02)																	
FORMULA'S										Head loss (P/L) = $pv^2u/2d$, & Fitting Losses = $K \times pV^2/2g \times \text{No. of fittings}$.																	
PIPE			Flow Q		Pipe Size	Hydraulic mean dep. R	Area m ²	Velocity m/sec V	Length mts L	MOC	friction loss coefficient		P/L		Pipe Loss P/L*L	Head loss mm											
FROM	TO	NB mm	m ³ /hr	m ³ /sec							u	N/m ²	m														
Air blower for Degasser suction header - Common	Air blower for Degasser suction header - Individual																										
Air blower for Degasser suction header - Individual	Blower suction										NA																
Blower Discharge	Blower Discharge Header	250	3150.0	0.8750	250	0.2500	0.049	17.825	1.50	GI	0.01	7.626	0.001	0.0011	1.1439												
Blower Discharge Header	To Degasser Tower	250	3150.0	0.8750	250	0.2500	0.049	17.825	50.00	GI	0.01	7.626	0.001	0.0381	38.1292												
Fittings K - values are taken from Chemical Engineers Hand Book - By Robert H. Perry /Cecil H Chilton																											
FITTING LOSSES				ID	Bell mouth	Bend				Tee	Valve																
PIPE						11 $\frac{1}{4}$ ^o	22 $\frac{1}{2}$ ^o	45 ^o	90 ^o	Square	Miter	Branch	Main	Gate	Globe	Diaph.	Butter	Plug	Ball	Angle	Check	Foot	Exp / Reducer	Y/ strainer	Miscellaneous	welding loss	
FROM	TO	NB mm	K val	0.10	0.10	0.20	0.35	0.25	1.50	0.40	0.17	0.30	0.40	0.17	6.00	2.60	0.24	9.00	0.30	1.00	0.50	15.0	0.60	3.00	0.90	0.05	
Air blower for Degasser suction header - Common	Air blower for Degasser suction header - Individual										1															0.0000	
Air blower for Degasser suction header - Individual	Blower suction																									0.0000	
Blower Discharge	Blower Discharge Header	250	250.00						1																	1.9239	
Blower Discharge Header	To Degasser Tower	250	250.00						1																	0.4858	
																		Frictional loss (Calculated)				41.683					
																		Static head = 8 m above ground level = 9.81*density of air*1000/1000 mm				7.2					
																		Total Head in M (Required)				48.883					
																		TOTAL HEAD PROVIDED in M				100					
																		Margin Available in %				105%					

END USER:	GSECL, 1 X 800 MW WANAKBORI STPP	CONTRACTOR:	AQUADESIGNS INDIA PVT.LTD
CLIENT :	M/S. BHEL	CLIENT :	M/S. BHEL - WANAKBORI
Doc. No	PE-V0-408-163-A003	Doc. Name	Pressure drop calculation

PROJECT : DM PLANT PACKAGE										TITLE : HYDRAULIC CALCULATION FOR Air blower for MB & NPIT - Capacity - 700 m3/hr @ 4000 mmWC head (Rev-03)																
FORMULA'S										Head loss (P/L) = $p v^2 u / 2d$, & Fitting Losses = $K \times p v^2 / 2g \times \text{No. of fittings}$.																
PIPE			Flow Q		Pipe Size ID mm	Hydraulic mean dep. R		Area m ²	Velocity m/sec V	Length mts L	MOC	friction loss coefficient		P/L		Pipe Loss P/L*L	Head loss mm									
FROM	TO	NB mm	m ³ /hr	m ³ /sec		mean dep. R	m ²					u	N/m ²	m												
Air blower for MB suction header - Common	Air blower for MB suction header - Individual	Blower suction	NA																							
Air blower for MB suction header - Individual	Blower suction		NA																							
Blower Discharge	Blower Discharge Header	100	450.0	0.1250	100	0.1000	0.008	15.915	1.50	GI	0.02	30.396	0.003	0.0046	4.5595											
Blower Discharge Header	To MB and N-Pit	100	450.0	0.1250	100	0.1000	0.008	15.915	15.00	GI	0.02	30.396	0.003	0.0456	45.5945											
FITTING LOSSES			Fittings K - values are taken from Chemical Engineers Hand Book - By Robert H. Perry /Cecil H Chilton																							
			ID	Bell mouth	Bend				Tee	Valve				Diaph.	Butter.	Plug	Ball	Angle	Check	Foot	Exp / Reducer	Y/ strainer	Miscellaneous	welding loss		
PIPE					11 1/4°	22 1/2°	45°	90°	180°	Square	Miter	Branch	Main	Gate	Globe	Diaph.	Butter.	Plug	Ball	Angle	Check	Foot	Exp / Reducer	Y/ strainer	Miscellaneous	welding loss
FROM	TO	NB mm	K val	0.10	0.10	0.20	0.35	0.45	1.50	0.40	0.17	1.00	0.40	0.17	6.00	2.60	0.24	9.00	0.30	2.00	2.00	15.0	0.60	3.00	0.90	0.05
Air blower for MB suction header - Common	Air blower for MB suction header - Individual	NA	0.00								1														0.0000	
Air blower for MB suction header - Individual	Blower suction	0	0.00																						0.0000	
Blower Discharge	Blower Discharge Header	100	100.00						1											1					4.1675	
Blower Discharge Header	To MB and N-Pit	100	100.00						2						2						2					7.2815
																	Frictional loss (Calculated)				61.603					
																	Static head = 12 m above ground level = $12 \times \text{density of air} / 1000 / 1000$ mm				14.4					
																	Maximum head loss in MB				3000.0					
																	Total Head in M (Required)				3076.003					
																	TOTAL HEAD PROVIDED in M				4000					
																	Margin Available in %				30%					

END USER:	GSECL, 1 X 800 MW WANAKBORI STPP	CONTRACTOR:	AQUADESIGNS INDIA PVT.LTD
CLIENT :	M/S. BHEL	CLIENT :	M/S. BHEL - WANAKBORI
Doc. No	PE-V0-408-163-A003	Doc. Name	Pressure drop calculation

PROJECT : DM PLANT PACKAGE

TITLE : HYDRAULIC CALCULATION FOR

Air blower for DMF- potable - Capacity - 62 m3/hr @ 4000 mmWC head (Rev-03)

FORMULA'S

$$\text{Head loss (P/L)} = \rho V^2/2d, \quad \text{& Fitting Losses} = K \times \rho V^2/2g \times \text{No. of fittings.}$$

PIPE			Flow Q		Pipe Size ID mm	Hydraulic mean dep. R	Area m ²	Velocity m/sec V	Length mts L	MOC	friction loss coefficient u	P/L		Pipe Loss P/L*L	Head loss mm
FROM	TO	NB mm	m ³ /hr	m ³ /sec								N/m ²	m		
Air blower for DMF- potable suction header - Common	Air blower for DMF- potable suction header - Individual														
Air blower for DMF- potable suction header - Individual	Blower suction														
Blower Discharge	Blower Discharge Header	40	62.0	0.0172	40	0.0400	0.001	13.705	1.50	GI	0.02	56.348	0.006	0.0085	8.4522
Blower Discharge Header	To DMF	40	62.0	0.0172	40	0.0400	0.001	13.705	10.00	GI	0.02	56.348	0.006	0.0563	56.3482

Fittings K - values are taken from Chemical Engineers Hand Book - By Robert H. Perry /Cecil H Chilton

FITTING LOSSES			ID	Bell mouth	Bend					Tee		Valve					Exp / Reducer	Y/ strainer	Miscellaneous	welding loss						
					11 1/4°	22 1/2°	45°	90°	180°	Square	Miter	Branch	Main	Gate	Globe	Diaph.	Butter	Plug	Ball	Angle	Check	Foot				
FROM	TO	NB mm	K val	0.10	0.10	0.20	0.35	0.45	1.50	0.40	0.17	1.00	0.40	0.17	6.00	2.60	0.24	9.00	0.30	2.00	2.00	15.0	0.60	3.00	0.90	0.05
Air blower for DMF- potable suction header - Common	Air blower for DMF- potable suction head	NA	0.00								1															0.0000
Air blower for DMF- potable suction header - Individual	Blower suction	0	0.00																1							0.0000
Blower Discharge	Blower Discharge Header	40	40.00						1										1							3.0902
Blower Discharge Header	To DMF	40	40.00						2			2											2			5.3993

Frictional loss (Calculated)	73.290
Static head = 12 m above ground level = 12*density of air*1000/1000 mm	14.4
Maximum head loss in DMF- potable	2500.0
Total Head in M (Required)	2587.690
TOTAL HEAD PROVIDED in M	4000(Rev-04)
Margin Available in %	55%

CLIENT :BHARAT HEAVY ELECTRICALS LIMITED
END CLIENT: GUJARAT STATE ELECTRICITY CORPORATION LTD
1 X 800 MW WANAKBORI SUPER CRITICAL THERMAL POWER
PROJECT
CONSULTANT: DEVELOPMENT CONSULTANTS PVT.LTD
DM PLANT ALONGWITH POTABLE WATER TREATMENT PLANT

Chapter 9

BATTERY LIMITS

BATTERY LIMITS FOR DEMINERALISATION PLANT:

S.NO	DESCRIPTION	TERMINATION POINT BY ADIPL
1.	DM Feed Water	From Clarified Water Pump House to DM plant (Max 200 meter distance from DM plant Area)
2.	Treated Water	Upto 5 m from the DM plant building.
3.	Backwash Waste Water	To Stilling Chamber of Pre Treatment Plant (Max 350 Meter distance from DM plant area)
4.	Neutralized Effluent	To Central Monitoring Basin (Max 800 meter distance from DM plant area)
S.NO	DESCRIPTION	TERMINATION POINT BY CLIENT
1.	Instrument air	25 NB Instrument Air Supply at 5-7 Kg/Cm ² -At 5 meter distance from DM plant area
2.	Service Area	25 NB Instrument Air Supply at 5-7 Kg/Cm ² -At 5 meter distance from DM plant area
3.	Power supply	415V , 50 Hz, 3 Phase Supply at Motor Terminals
4.	Service Water	50 NB connection to be provided at 5 meter distance from DM plant area
5.	Drinking Water	25 NB connection to be provided at 5 meter distance from DM plant area
6.	Chemicals	20 m hose from unloading pumps.

**DM PLANT ALONG WITH POTABLE
WATER TREATMENT PLANT**

REVISION:5

**BASIC ENGINEERING PACKAGE
DOC NO: PE-V0-408-163-A003**

CLIENT :BHARAT HEAVY ELECTRICALS LIMITED
END CLIENT: GUJARAT STATE ELECTRICITY CORPORATION LTD
1 X 800 MW WANAKBORI SUPER CRITICAL THERMAL POWER
PROJECT
CONSULTANT: DEVELOPMENT CONSULTANTS PVT.LTD
DM PLANT ALONGWITH POTABLE WATER TREATMENT PLANT

BATTERY LIMITS FOR POTABLE WATER PLANT:

S.NO	DESCRIPTION	TERMINATION POINT BY ADIPL
1.	Filter Feed Water	50 NB Pipe Connection to be provided At 5 meter distance from DMF inlet
2.	Treated Water	50 NB connection to be provided at 5 meter distance from Potable plant area
3.	Backwash Waste Water	To Filter Backwash Sump
S.NO	DESCRIPTION	TERMINATION POINT BY CLIENT
1.	Instrument air	25 NB Instrument Air Supply at 5-7 Kg/Cm ² -At 5 meter distance from Potable plant area
2.	Service Air	25 NB Instrument Air Supply at 5-7 Kg/Cm ² -At 5 meter distance from Potable plant area
3.	Power supply	415V , 50 Hz, 3 Phase Supply at Motor Terminals
4.	Service Water	50 NB connection to be provided at 5 meter distance from Potable plant area
5.	Chemicals	At the inlet of dosing tanks

**DM PLANT ALONG WITH POTABLE
WATER TREATMENT PLANT**

REVISION:5

**BASIC ENGINEERING PACKAGE
DOC NO: PE-V0-408-163-A003**

CLIENT :BHARAT HEAVY ELECTRICALS LIMITED
END CLIENT: GUJARAT STATE ELECTRICITY CORPORATION LTD
1 X 800 MW WANAKBORI SUPER CRITICAL THERMAL POWER
PROJECT
CONSULTANT: DEVELOPMENT CONSULTANTS PVT.LTD
DM PLANT ALONGWITH POTABLE WATER TREATMENT PLANT

Chapter **10**

ANNEXURE-1

1. DM PLANT DESIGN SOFTWARE PROJECTION
2. MB PLANT DESIGN SOFTWARE PROJECTION

	BHARAT HEAVY ELECTRICALS LTD PROJECT ENGINEERING MANAGEMENT
This approval status shall be interpreted as laid down in the contract and it shall not relieve the contractor from the contractual obligations.	
APPROVAL CATEGORY AWARDED : I	
CAT I - Approved	
CAT II - Approved With Comments as Noted	
CAT III - Not Approved	
CAT IV - Pending Approval	
DEPARTMENT	MECHANICAL AUXILIARY
NAME	GANENDRA SINGH

**DM PLANT ALONG WITH POTABLE
WATER TREATMENT PLANT**

REVISION:5

**BASIC ENGINEERING PACKAGE
DOC NO: PE-V0-408-163-A003**

CALCULATION OF ION EXCHANGE PLANT WITH PUROLITE ION EXCHANGE RESINS

Customer	BHEL-wankbori	Operator	Operator
Sales Person	Praveen	Agent	Agent
OEM Company	ADIPL	Date	9-10-2016
Calcn. No	No	Code	NONAME

1. INFLUENT WATER SPECIFICATIONS

1.1. Origin: River
1.2. Pretreatment: filtration

1.3. Water analysis:

Ca , ppm CaCO ₃	85.00	HCO₃ , ppm CaCO ₃	160.00	CO₂ , meq/l	0.0000
Mg , ppm CaCO ₃	94.00	CO₃ , meq/l		SiO₂ , ppm	22.0000
Na , ppm CaCO ₃	75.00	Cl , ppm CaCO ₃	52.00	Temperature, °C	10
K , meq/l		SO₄ , ppm CaCO ₃	20.00	Org. , mg/l KMnO ₄	
Fe , ppm	0.0500	NO₃ , ppm CaCO ₃	22.00		
T.C. , meq/l	5.0827	T.A. , meq/l	5.0800		

2. DESIGN INPUT DATA

2.1. Flow rate per line, m³/h: 106.83
2.2. Running time, h: 18.0
2.3. Net run, m³: 1922.94

3. TREATED WATER QUALITY

Conductivity , μ S/cm: Silica leakage , ppm SiO ₂ : Sodium leakage , ppm CaCO ₃ : Hardness leakage	achieved <5 at 25 °Cat the outlet of SBA <0.1 at the outlet of SBA <1 at outlet of SAC Not detectable at the outlet of SAC
---	---

Residual CO₂ :	after SAC filter, meq/l after degasser, ppm as CO ₂	3.2000 < 5 at the outlet of degasser tower
----------------------------------	---	---

4. PUROLITE IX PROCESS OPTIONS

4.1. Ion exchange process: 4.2. Plant layout: No of Lines:	Demineralisation WAC -> SAC -> DEG -> WBA -> SBA	<hr/>
4.3. Resins chosen:	PUROLITE C-104Plus, PurofinePFC-100H, Purolite A-100Plus, PuropackPPA-500Plus	

5. COMMENTS

6. FULL PLANT DESIGN DETAILS				
6.1. Filter	WAC	SAC	WBA	SBA
6.2. IX Load				
Gross flow , m3/hr	112.26	111.28	108.55	107.57
Gross run load, m3	2020.6	2003.0	1953.8	1936.2
Ionic load, eq	5496.16	4730.60	2938.54	1825.20
Overrun, %		15		20
6.3. Resin Data				
Resin type	C-104 Plus	PFC-100H	A-100 Plus	PPA-500 Plus
Resin grade	Std	Pfn	Std	Pfn
Theor. capacity, eq/l	1.94	1.62	1.11	0.490
Oper. capacity, eq/l	1.746	1.458	0.999	0.441
Resin volume, l	3150	3245	2945	4140
Flow rate, BV/h	33.4	32.4	35.7	25.4
Organic load, g/l			0.000	0.000
6.4. Regeneration Data				
Regeneration Mode	CF	CTF:Pfn	CF	CTF:Pfn
Regenerant	HCl	HCl	NaOH	NaOH
Concentration, %		5.0		5.0
% of Theory	140	263	255	510
for W-S Pair	122		214	
Level, g/l		140.0		90.0
Total, kg		454.3		372.6
Excess, eq		2221		4551
Temperature, °C			25	25
Chemical at 30 % conc, m3		1.34		0.96
Backwash m3	4.25		2.36	
Downflow water		5.08		5.83
Dilution water, m3	11.65	7.40	10.03	6.57
Bed warming m3				4.14
Slow rinse, m3	8.65	6.49	5.52	4.14
Fast rinse, m3		12.60		11.78
Backwash for MB m3			2.98	
6.5. Plant Size Data				
Bed depth, mm (changing from supplied form as shown)				
Supplied form	1121	1156	1048	1474
Exhausted form	1290		1257	
Regenerated form		1248		1740
Vessel diameter, mm	1900	1900	1900	1900
Cross-section, m2	2.81	2.81	2.81	2.81
Cylindrical height, mm	2100	2400	2100	3300
6.6. Hydraulic Data				
Linear velocity, m/h	39.99	39.6	38.7	38.3
Pressure Drop, kPa	37.7	28.1	34.0	32.1
6.7. Design Factor	0.90	0.90	0.90	0.90

CALCULATION OF ION EXCHANGE PLANT WITH PUROLITE ION EXCHANGE RESINS

Customer	BHEL – wankbori – MB	Operator	Operator
Sales Person	Praveen	Agent	Agent
OEM Company	Aquadesign	Date	9-10-2016
Calcn. No	No	Code	NONAME

1. INFLUENT WATER SPECIFICATIONS

1.1. Origin: River

1.2. Pretreatment: Filter

1.3. Water analysis:

Ca , ppm CaCO3	HCO3 , ppm CaCO3	CO2 , ppm CaCO3	0.0000
Mg , ppm CaCO3	CO3 , ppm CaCO3	SiO2 , ppm	0.1000
Na , ppm CaCO3	1.00	Cl , ppm CaCO3	1.00
T.C. , meq/l	0.0200	T.A. , meq/l	0.0200

2. DESIGN INPUT DATA

2.1. NetFlow rate per line, m3/h: 105.0

2.2. Running time, h: 126.0

2.3. Net run, m3: 13230.0

3. TREATED WATER QUALITY

	achieved
Conductivity , μ S/cm:	<0.10 at 25 °C
Silica leakage , ppb SiO2:	<10
Iron as Fe	Nil
Free CO2 ppm as CO2	Nil
Total Hardness	Nil
Total Electrolyte ppm	0.1 Max
pH value	6.8 -7.2 at 25 °C

4. PUROLITE IX PROCESS OPTIONS

4.1. Ion exchange process:	Working Mixed Bed
4.2. Plant layout:	SAC+SBA (Working MB)
No of Lines:	_____
4.3. Resins chosen:	PUROLITE PurofinePFC-100HPuropackPPA-500Plus
4.4. Volume ratio:	Free selection

5. COMMENTS

6. FULL PLANT DESIGN DETAILS		Project: BHEL	
6.1. Filter		SAC	SBA
		(common)	
6.2. IX Load			
Gross flow, m ³ /hr		106.83	
Gross run load, m ³		13460.1	
Ionic load, eq	269	292	
6.3. Resin Data			
Resin type	C-100	A-400	
Resin grade	PFC100H	PFA500 Plus	
Theor. capacity, eq/l	1.32	0.35	
Oper. capacity, eq/l	0.270	0.292	
Resin volume, l	1000	1000	
Flow rate, BV/h	53.4		
SAC %	50.00		
6.4. Regeneration Data			
Regeneration Mode	Internal		
Regenerant	HCl	NaOH	
Concentration, %	5	5	
% of Theory	1018	940	
Level, g/l	100.0	100.0	
Total, kg	100	100	
Excess, eq	2471	2208	
Temperature, °C		25	
Chemical at 30 % conc, m ³	0.29	0.26	
Backwash m ³	2.98		
Dilution water, m ³	1.63	1.65	
Bed warming, m ³		1.00	
Slow rinse, m ³	3.00	2.00	
Fast rinse, m ³	4.00	4.00	
Water required for WBA and SBA regeneration		30.40	
6.5. Plant Size Data			
Bed depth, mm (changing from supplied form as shown)			
Supplied form	503	503	
Exhausted form			
Regenerated form	544	594	
Vessel diameter, mm	1600		
Cross-section, m ²	1.99		
Cylindrical height, mm	2400.00		
6.6. Hydraulic Data			
Linear velocity, m/h	53.8		
Pressure Drop, kPa	46.0		
6.7. Design Factor	0.205	0.835	

CLIENT :BHARAT HEAVY ELECTRICALS LIMITED
END CLIENT: GUJARAT STATE ELECTRICITY CORPORATION LTD
1 X 800 MW WANAKBORI SUPER CRITICAL THERMAL POWER
PROJECT
CONSULTANT: DEVELOPMENT CONSULTANTS PVT.LTD
DM PLANT ALONGWITH POTABLE WATER TREATMENT PLANT

Chapter **11**

ANNEXURE-2

Table No.-A-2.1

N-PIT – sizing calculation and Regeneration flow and timing details

	DM PLANT ALONG WITH POTABLE WATER TREATMENT PLANT	BASIC ENGINEERING PACKAGE DOC NO: PE-V0-408-163-A003
	REVISION:5	

Table No.-A-2.1

N-Pit sizing Calculations

Wastes Generated	WAC				SAC				WBA				SBA				MB-Cation		MB-Anion		MB flow details	
	Vol in m3	Source of water	Flow in m3/hr	Regeneration time in min	Vol in m3	Source of water	Flow in m3/hr	Regeneration time in min	Vol in m3	Source of water	Flow in m3/hr	Regeneration time in min	Vol in m3	Source of water	Flow in m3/hr	Regeneration time in min	Vol in m3	Source of water	Vol in m3	Source of water	Flow in m3/hr	Regeneration time in min
Backwash Waste	4.25	ACF	25.5	10	-	-	-	-	2.36	DG	14.16	10	-	-	-	-	3	SBA	-	-	18	10
Bed settle	-	-	-	5	-	-	-	-	-	-	-	5	-	-	-	-	-	-	-	-	-	5
Downflow water	-	-	-	-	5.06	WAC	3.37	90	-	-	-	-	5.83	WBA	3.89	90	-	-	-	-	-	-
Chemical at 30% concerntation in measuring tank	-	-	-	-	1.34	Acid	11.65	45	-	-	-	-	0.75	Alkali	9.76	45	0.29	Acid	0.26	Alkali	2.54	45
Dilution Water (chemical injection)	11.65	DG	31.07	45	7.40	DG			10.03	DM	27.30	45	6.57	DM			1.63	DM	1.65	DM		
Bed warming	-	-	-	-	-	-	-	-	-	-	-	4.14	DM	16.56	15	-	-	1	DM	4	15	
Slow Rinse	8.65	DG	23.07	45	6.49	DG	8.65	45	5.52	DM	24.33	45	4.14	DM	8.28	30	3	DM	2	DM	6.7	45
Drain down	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	5
Air scouring	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	241.2	10
Refilling	-	-	112.26	5	-	-	111.28	5	-	-	108.55	5	-	-	107.57	5	-	-	-	-	105.2	5
Fast Rinse	12.6	ACF	112.26	6.73	12.6	WAC	111.28	6.79	11.78	DG	108.55	6.51	11.78	WBA	107.57	6.57	4	SBA	4	SBA	105.2	4.56
Total time				111.7			96.8				116.5					96.6						144.6
Total Regeneration Waste Generated			24.55			32.89			17.91				33.21			11.92		8.90				
Total N-Pit capacity Required with 20% margin (in m3)																						

Note :

- 1.The flow rate marked in yellow includes the recycling flow from SAC and SBA and volume marked in green includes recycling flow from WAC and WBA, hence it is included in the total regenaeration waste of SAC and SBA, not in WAC and WBA.
2. The waste generation includes only common fast rinse for WAC& SAC and WBA &SBA.

CLIENT :BHARAT HEAVY ELECTRICALS LIMITED
END CLIENT: GUJARAT STATE ELECTRICITY CORPORATION LTD
1 X 800 MW WANAKBORI SUPER CRITICAL THERMAL POWER
PROJECT
CONSULTANT: DEVELOPMENT CONSULTANTS PVT.LTD
DM PLANT ALONGWITH POTABLE WATER TREATMENT PLANT

Table No.-A-2.2

DG Tank Capacity Calculations (Please refer annexure - 1 for the below data and also Table No.- A-2.1)	
Wastes Generated	m3
WAC Slow Rinse Waste	8.65(Rev-03)
WAC Dilution Water(Rev-01)	11.65(Rev-03)
SAC Dilution Water	7.40(Rev-03)
SAC Slow Rinse Waste	6.49(Rev-03)
WBA Backwash Water	2.36
WBA Fast Rinse Waste	11.78(Rev-03)
Total Degassed Water Required for Regeneration of WAC, WBA and SAC	= $(8.65+11.65+7.40+6.49+2.36+11.78)$ =48.33(Rev-03)
One hour retention for the DM chain	=105 m3
Capacity required for DG water tank	153.33 m3(Rev-03)
DG Tank capacity provided with 20% margin	184 m3(Rev-03)

**DM PLANT ALONG WITH POTABLE
WATER TREATMENT PLANT**

REVISION:5

**BASIC ENGINEERING PACKAGE
DOC NO: PE-V0-408-163-A003**

CLIENT :BHARAT HEAVY ELECTRICALS LIMITED
END CLIENT: GUJARAT STATE ELECTRICITY CORPORATION LTD
1 X 800 MW WANAKBORI SUPER CRITICAL THERMAL POWER
PROJECT
CONSULTANT: DEVELOPMENT CONSULTANTS PVT.LTD
DM PLANT ALONGWITH POTABLE WATER TREATMENT PLANT

Table No. A-2.3

Horizontal tank volume arrival calculation

DG water storage tank dimension arrival calculation		
Diameter of tank including rubber lining	4.791	m
Radius of tank including rubber lining	2.3955	m
LOS of the tank	9	m
Free board	0.3	m
Dead Depth	0.1	m
Shell Area	18.01863959	Sq.m
Effective area	Shell area - Arc1 area + Area of the triangle1 - Arc2 area + Area of the triangle2	Sq.m
Arc1 area	Angle of arc1*(radius)^2/2	Sq.m
Angle of arc1	2*COS-1(Ht of triangle1/Radius)	
Height of the traingle 1	Radius - Free board	
	2.0955	m
Angle of arc1	1.01169066	
Arc area1	2.902753086	Sq.m
Area of triangle1	2* (Area of right angle traingle1)	Sq.m
Area of right angle triangle1	(breadth* Height)/2	Sq.m
Breadth of the right angle traingle1	1.161	By pythagoras thorem
Area of right angle triangle 1	1.216157506	
Area of triangle1	2.432315011	Sq.m
Arc2 area	Angle of arc2*(radius)^2/2	Sq.m
Angle of arc2	2*COS-1(Ht of triangle2/Radius)	
Height of the traingle 2	Radius - Dead depth	
	2.2955	
Angle of arc2	0.579921758	Sq.m
Arc area2	1.663917379	
Area of triangle2	2* (Area of right angle traingle2)	Sq.m
Area of right angle triangle2	(breadth* Height)/2	
Breadth of right angle traingle2	0.685	m (By pythagoras thorem)
Area of right angle triangle 2	0.786104021	Sq.m
Area of triangle2	1.572208043	Sq.m
Effective area	17.45649217	Sq.m

**DM PLANT ALONG WITH POTABLE
WATER TREATMENT PLANT**

REVISION:5

**BASIC ENGINEERING PACKAGE
DOC NO: PE-V0-408-163-A003**

CLIENT :BHARAT HEAVY ELECTRICALS LIMITED
END CLIENT: GUJARAT STATE ELECTRICITY CORPORATION LTD
1 X 800 MW WANAKBORI SUPER CRITICAL THERMAL POWER
PROJECT
CONSULTANT: DEVELOPMENT CONSULTANTS PVT.LTD
DM PLANT ALONGWITH POTABLE WATER TREATMENT PLANT

Effective volume of the shell	Effective area*LOS	Cu.m
Effective volume of the shell	157.1084296	Cu.m
Effective Volume of dish	volume of bottom quadrants + volume of top quadrants	
Effective Volume of bottom quadrants for ellipsoidal dish	$(3.14 * R1 * R2 * (a - (a^3 / (3 * R3^2))))$	Cu.m
R1	2.3955	m
R2	1.1955	m
R3	2.3955	m
a	R3 - Dead depth	m
	2.2955	m
Effective Volume of bottom quadrants for ellipsoidal dish	14.3238394	Cu.m
Effective Volume of top quadrants for ellipsoidal dish	$(3.14 * R1 * R2 * (a - (a^3 / (3 * R3^2)))) / 2$	Cu.m
R1	2.3955	m
R2	1.19775	m
R3	2.3955	m
a	R3 - free board	m
	2.0955	m
Effective Volume of top quadrants for ellipsoidal dish	14.06352956	Cu.m
Effective Volume of dish	volume of bottom quadrants + volume of top quadrants	Cu.m
Effective Volume of dish	28.38736896	Cu.m
Effective Volume of Horizontal storage tank	Effective volume of the Shell + Effective volume of dish	
Effective Volume of Horizontal storage tank	185.4957985	Cu.m
Our required volume	185	Cu.m

Bulk acid storage tank dimension arrival calculation		
Diameter of tank including rubber lining	3.191	m
Radius of tank including rubber lining	1.5955	m
LOS of the tank	6.3	m
Free board	0.3	m
Dead Depth	0.1	m
Shell Area	7.993247585	Sq.m

**DM PLANT ALONG WITH POTABLE
WATER TREATMENT PLANT**

REVISION:5

**BASIC ENGINEERING PACKAGE
DOC NO: PE-V0-408-163-A003**

CLIENT :BHARAT HEAVY ELECTRICALS LIMITED
END CLIENT: GUJARAT STATE ELECTRICITY CORPORATION LTD
1 X 800 MW WANAKBORI SUPER CRITICAL THERMAL POWER
PROJECT
CONSULTANT: DEVELOPMENT CONSULTANTS PVT.LTD
DM PLANT ALONGWITH POTABLE WATER TREATMENT PLANT

Effective area	Shell area - Arc1 area + Area of the triangle1 - Arc2 area + Area of the triangle2	Sq.m
Arc1 area	Angle of arc1*(radius) ² /2	Sq.m
Angle of arc1	2*COS-1(Ht of triangle1/Radius)	
Height of the traingle 1	Radius - Free board	
	1.2955	m
Angle of arc1	1.246550124	
Arc area1	1.58662162	Sq.m
Area of triangle1	2* (Area of right angle traingle1)	Sq.m
Area of right angle triangle1	(breadth* Height)/2	Sq.m
Breadth of the right angle traingle1	0.931	By pythagoras theorem
Area of right angle triangle 1	0.603242727	
Area of triangle1	1.206485455	Sq.m
Arc2 area	Angle of arc2*(radius) ² /2	Sq.m
Angle of arc2	2*COS-1(Ht of triangle2/Radius)	
Height of the traingle 2	Radius - Dead depth	
	1.4955	
Angle of arc2	0.711854842	Sq.m
Arc area2	0.906056051	
Area of triangle2	2* (Area of right angle traingle2)	Sq.m
Area of right angle triangle2	(breadth* Height)/2	
Breadth of right angle traingle2	0.556	m (By pythagoras theorem)
Area of right angle triangle 2	0.415724792	Sq.m
Area of triangle2	0.831449583	Sq.m
Effective area	7.538504952	Sq.m
Effective volume of the shell	Effective area*LOS	Cu.m
Effective volume of the shell	47.4925812	Cu.m
Effective Volume of dish	volume of bottom quadrants + volume of top quadrants	
Effective Volume of bottom quadrants for ellipsoidal dish	(3.14*R1*R2*(a-(a ³ /(3*R3 ²))))	Cu.m
R1	1.5955	m
R2	0.7455	m
R3	1.5955	m
a	R3 - Dead depth	m
	1.4955	m
Effective Volume of bottom quadrants for ellipsoidal dish	3.949724406	Cu.m
Effective Volume of top quadrants for ellipsoidal dish	(3.14*R1*R2*(a-(a ³ /(3*R3 ²)))/2	Cu.m

**DM PLANT ALONG WITH POTABLE
WATER TREATMENT PLANT**

REVISION:5

**BASIC ENGINEERING PACKAGE
DOC NO: PE-V0-408-163-A003**

CLIENT :BHARAT HEAVY ELECTRICALS LIMITED
END CLIENT: GUJARAT STATE ELECTRICITY CORPORATION LTD
1 X 800 MW WANAKBORI SUPER CRITICAL THERMAL POWER
PROJECT
CONSULTANT: DEVELOPMENT CONSULTANTS PVT.LTD
DM PLANT ALONGWITH POTABLE WATER TREATMENT PLANT

R1	1.5955	m
R2	0.79775	m
R3	1.5955	m
a	R3 - free board	m
	1.2955	m
Effective Volume of top quadrants for ellipsoidal dish	4.039761357	Cu.m
Effective Volume of dish	volume of bottom quadrants + volume of top quadrants	Cu.m
Effective Volume of dish	7.989485764	Cu.m
Effective Volume of Horizontal storage tank	Effective volume of the Shell + Effective volume of dish	
Effective Volume of Horizontal storage tank	55.48206696	Cu.m
Our required volume	54.8	Cu.m

Bulk caustic storage tank dimension arrival calculation		
Diameter of tank including rubber lining	2.291	m
Radius of tank including rubber lining	1.1455	m
LOS of the tank	4.2	m
Free board	0.3	m
Dead Depth	0.1	m
Shell Area	4.120214585	Sq.m
Effective area	Shell area - Arc1 area + Area of the triangle1 - Arc2 area + Area of the triangle2	Sq.m
Arc1 area	Angle of arc1*(radius)^2/2	Sq.m
Angle of arc1	2*COS-1(Ht of triangle1/Radius)	
Height of the traingle 1	Radius - Free board	
	0.8455	m
Angle of arc1	1.481076161	
Arc area1	0.971712038	Sq.m
Area of triangle1	2* (Area of right angle traingle1)	Sq.m
Area of right angle triangle1	(breadth* Height)/2	Sq.m
Breadth of the right angle traingle1	0.773	By pythagoras thorem
Area of right angle triangle 1	0.326723124	
Area of triangle1	0.653446249	Sq.m
Arc2 area	Angle of arc2*(radius)^2/2	Sq.m
Angle of arc2	2*COS-1(Ht of triangle2/Radius)	

**DM PLANT ALONG WITH POTABLE
WATER TREATMENT PLANT**

REVISION:5

**BASIC ENGINEERING PACKAGE
DOC NO: PE-V0-408-163-A003**

CLIENT :BHARAT HEAVY ELECTRICALS LIMITED
END CLIENT: GUJARAT STATE ELECTRICITY CORPORATION LTD
1 X 800 MW WANAKBORI SUPER CRITICAL THERMAL POWER
PROJECT
CONSULTANT: DEVELOPMENT CONSULTANTS PVT.LTD
DM PLANT ALONGWITH POTABLE WATER TREATMENT PLANT

Height of the traingle 2	Radius - Dead depth	
	1.0455	
Angle of arc2	0.841896471	Sq.m
Arc area2	0.552355751	
Area of triangle2	2* (Area of right angle traingle2)	Sq.m
Area of right angle triangle2	(breadth* Height)/2	
Breadth of right angle traingle2	0.468	m (By pythagoras thorem)
Area of right angle triangle 2	0.244689442	Sq.m
Area of triangle2	0.489378884	Sq.m
Effective area	3.738971928	Sq.m
Effective volume of the shell	Effective area*LOS	Cu.m
Effective volume of the shell	15.7036821	Cu.m
Effective Volume of dish	volume of bottom quadrants + volume of top quadrants	
Effective Volume of bottom quadrants for ellipsoidal dish	(3.14*R1*R2*(a-(a^3/(3*R3^2))))	Cu.m
R1	1.1455	m
R2	0.5455	m
R3	1.1455	m
a	R3 - Dead depth	m
	1.0455	m
Effective Volume of bottom quadrants for ellipsoidal dish	1.481754439	Cu.m
Effective Volume of top quadrants for ellipsoidal dish	(3.14*R1*R2*(a-(a^3/3*R3^2))/2	Cu.m
R1	1.1455	m
R2	0.57275	m
R3	1.1455	m
a	R3 - free board	m
	0.8455	m
Effective Volume of top quadrants for ellipsoidal dish	1.425506119	Cu.m
Effective Volume of dish	volume of bottom quadrants + volume of top quadrants	Cu.m
Effective Volume of dish	2.907260558	Cu.m
Effective Volume of Horizontal storage tank	Effective volume of the Shell + Effective volume of dish	
Effective Volume of Horizontal storage tank	18.61094266	Cu.m
Our required volume	18.44	Cu.m

**DM PLANT ALONG WITH POTABLE
WATER TREATMENT PLANT**

REVISION:5

**BASIC ENGINEERING PACKAGE
DOC NO: PE-V0-408-163-A003**